|
СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
АННОТАЦИИ
Гаврилюк А. Л., Махнев А. А. Вполне регулярные графы и блок-схемы //
Том 47 (2006), Номер 4,
стр. 753768
Исследуются вполне регулярные графы $\Gamma$ диаметра $d$, в которых для некоторой вершины $a$ множество вершин, находящихся на расстоянии $d$ от $a$, является множеством точек 2-схемы, множество блоков которой состоит из пересечений окрестностей точек с множеством вершин, находящихся на расстоянии $d-1$ от $a$. Доказано, что подграф, индуцированный множеством точек, является кликой, кокликой или сильно регулярным графом диаметра~2. Для графа диаметра ~3 установлено, что указанная конструкция является 2-схемой для любой вершины $a$ тогда и только тогда, когда граф дистанционно регулярен и для любой вершины $a$ подграф $\Gamma_3(a)$ является кликой, кокликой или сильно регулярным графом. Получен список возможных параметров для схем и графов диаметра ~3 при условии, что подграф, индуцированный множеством точек, является графом Зейделя. Показано, что некоторые из найденных параметров не могут отвечать дистанционно регулярным графам.
|
|
© Сибирский Математический Журнал, 2003-2006
|
|