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ELEMENTARY FORMULAS FOR A HYPERBOLIC TETRAHEDRON
A. D. Mednykh and M. G. Pashkevich UDC 513.113.4+514.114+4-514.132

Abstract: We derive some elementary formulas expressing the relation between the dihedral angles
and edge lengths of a tetrahedron in hyperbolic space.
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1. Introduction

Elementary formulas relating the dihedral angles and edge lengths of a tetrahedron in hyperbolic space
are important in solving the classical problem of computation of the volume of a hyperbolic tetrahedron
which was solved recently in [1-4]. Among the results of the present article, for instance, Theorem 2
(“The Law of Sines”) we would single out as it reads classical. In a slightly different form this theorem
can be found in Coolidge’s book [5] written in the beginning of the last century. Theorem 4 (“The Law
of Cosines”) appears to us to be a new or at least well forgotten result. Both theorems were used in [4]
and [6] for calculating the volume of a symmetric hyperbolic tetrahedron. Basing on these theorems, we
answer in the affirmative the question of Buser concerning the relation between the face areas and heights
in a hyperbolic tetrahedron. In addition, this article offers a hyperbolic analog of the generalized sine
theorem (Theorem 7) obtained by Rivin [7] in the case of a Euclidean space. Our proof of that result
is based on the formulas for the edge lengths and heights of an n-dimensional hyperbolic simplex also
established herein.

2. Preliminaries

Following Ratcliffe [8], we recall some well-known facts of hyperbolic geometry which will be needed
later. The real vector space R™! of dimension n + 1 with the Lorentz inner product (x,y) = —zoyo +
x1y1 + -+ + Tnyn, where x = (29, 21,...,2,) and y = (Y0, Y1,---,Yn), is called an (n + 1)-dimensional
Lorentzian space EL™.

Consider the two-sheeted hyperboloid /% = {x € E'™ | (x,x) = —1} and its upper sheet 1T =
{x € Eb | (x,x) = —1, 29 > 0}. The restriction of the quadratic form induced by the Lorentz inner
product (-, -) to the tangent space to %’fr is positive definite, and so it gives a Riemannian metric on jfﬁ.
The space 1, equipped with this metric, is called a hyperbolic model of the n-dimensional hyperbolic
space and denoted by H". The hyperbolic distance d between two points x and y in this metric is given
by the formula (x,y) = — coshd.

Consider the cone .7 = {x € E'"™ | (x,x) = 0} and its upper half # *={x € E'" | (x,x) = 0,z > 0}.
A ray in J# T issuing from the origin corresponds to a point on the ideal boundary of H". The set of such
rays forms a sphere at infinity S%!. Thus, each ray in .# * becomes an infinitely distant point of H".

Denote by & the radial projection of EM\{x € E'™ | 9 = 0} onto the affine hyperplane P} =
{x € Eb | 29 = 1} along a ray issuing from the origin 0. The projection & is a homeomorphism of H"
onto the open n-dimensional unit ball B” in P} centered at (1,0,0,...,0) which defines a projective
model of H". The affine hyperplane P7 includes not only B™ and its set-theoretic boundary 0B™ in P},
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which is canonically identified with S7!) but also the exterior of the compactified projective model
B" = B"UOB" ~ H" U S L. Therefore, & can be naturally extended to a map from E'™\{0} onto
an n-dimensional real projective space P" = PT U P, where P is the set of straight lines in the affine
hyperplane {x € E'" | zg = 0} passing through the origin. Denote by Ext B" the exterior of B™ in P".

Consider the one-sheeted hyperboloid % = {x € E'™ | (x,x) = 1}. Given some point u in % define
in E1™ the half-space Ry = {x € E}" | (x,u) < 0} and the hyperplane P, = {x € E'" | (x,u) = 0}
= ORy. Denote by I'y (respectively II,) the intersection of Ry (respectively Py) with B™. Then II, is
a geodesic hyperplane in H”, and the correspondence between the points in 7 and the half-space I'y
in H™ is bijective. Call the vector u normal to Py (or IIy).

Proposition 1. Take two noncollinear points x and y in ;. One of the following holds:

(i) The geodesic hyperplanes Iy and Ily intersect provided that |(x,y)| < 1. In this case the (hyper-
bolic) angle 6 between them is given by (x,y) = — cosf.

(ii) The geodesic hyperplanes Il and Ily do not intersect in B™; thus, they intersect in Ext B"
provided that |(x,y)| > 1. In this case the (hyperbolic) distance d between them is given by |(x,y)| =
—coshd. Such Il and Il are called ultraparallel.

(iii) The geodesic hyperplanes Iy and I, do not intersect in B™ but intersect in OB™ provided that
|(x,y)| = 1. In this case the angle and distance between them are both zero. Such Ilx and Ily are
called parallel.

Proposition 2. Take a point x in B" and a geodesic hyperplane IIy whose normal vector y lies in
Jt; so that (x,y) < 0. Then the distance d between x and Il is given by (x,y) = —sinhd.

Take v € ExtB". Then &~ !(v) N 2 contains two points that define the same hyperplane IIg,
v € 271 (v)n ;. Call Il the polar geodesic hyperplane to v, and call v the pole of I1;.

Proposition 3. Take v € Ext B".
(i) Every hyperplane passing through v and crossing B™ is orthogonal to Il in H".
(ii) If u € P4 N OB" then the line through u and v is tangent to OB".

3. The n-Dimensional Generalized Hyperbolic Simplex

Assume now that n > 3. Denote by A a convex polyhedron in P{'. Assume that each of the edges
(the (n — 2)-dimensional faces) of A crosses B™.

DEFINITION 1. Take a vertex v of A, with v € ExtB". Call a truncation of A the operation of
removing the pyramid with apex v and base II; N A; call the truncated polyhedron A’ the polyhedron
obtained by truncating all vertices lying in Ext B?. Call v a finite, ideal, and ultraideal vertex of A’ in
the cases that v € B", 9B", and Ext B" respectively. By a generalized hyperbolic polyhedron we will
mean either a polyhedron in the usual sense or a truncated polyhedron.

Consider the n-dimensional generalized hyperbolic simplex ¢™ with vertices v;, heights h; and edge
lengths [;;, 7,j = 1,2,...,n + 1, in the projective model B" of the hyperbolic space. Denote by G =
(— cos j)ij=1,..n+1 the Gram matrix of ™, where «;; is the dihedral angle at the ij-face of the simplex,
which is opposite to v; and v;. Denote by C = (cij)i j=1,..n+1 the adjoint matrix that consists of the
elements c;; = (—1)itJ G;j, where G;; is the ijth minor of G. The following theorem gives necessary and
sufficient conditions for the existence of a generalized hyperbolic simplex in terms of its Gram matrix.

Theorem 1 [3]. Given a set {0;; € [0,7] |i,5=1,...,n+1, 0;; =0j;, 0;; =7, i = j} of positive
real numbers, the following two conditions are equivalent:

(1) there exists a generalized hyperbolic simplex in H™ with the dihedral angle between the ith face
and the jth face equal to 0;;;

(2) the real symmetric matrix G = (— cos 6;;); j—1,...n+1 of size n+1 satisfies the following conditions:

(i) sgen G = (n, 1); i.e., G has one negative and n positive eigenvalues;

(i) cij > 0,i# 4, 4,5 =1,2,...,n+1.
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The ith vertex of the simplex is finite, ideal, or ultraideal provided that c;; > 0, ¢;; = 0, or ¢;; < 0
respectively.

Proposition 4. Take an n-dimensional generalized hyperbolic simplex ¢" with finite vertices v,
heights h;, and edge lengths l;;,1,5 = 1,2,...,n+ 1. Then

coshl;; = %ij , (i)

PROOF. Theorem 1 implies that det G < 0 for the Gram matrix

G = (Gij)ij=1,..n+1 = (— €08 0ij)i j=1,.. . n+1
of a hyperbolic simplex ¢™. Then there exists a basis of n + 1 unit vectors {u1,...,u,11} in EL"™ such
that (u;, u;) = —cos6;;. Consider the system of vectors {ws,. .., wp4+1} with w; = ZZI} CipU, Where ¢,
are the elements of the adjoint matrix C. We have

n+1 n+1 n+1
(wi, uj) < § Czkukau3> = E Cik (Uk, uj) = E CikGrj = 0;j det G,
k=1

k=1
where §;; is the Kronecker symbol. Thus, the system of vectors {w1,...,w,11} defines the basis in ELn
dual to {u1,...,unt1}. In order to make it orthonormal, compute
n+1 n+1 n+1
(ws, w;) <Z clkuk,w]> = Zcik(uk,wj> = Z cikOrjdet G = ¢;5det G
=1 k=1
and denote by v; = ﬁ, with ¢;; > 0, the vectors of the orthonormal basis. This basis defines some

system of vectors at the vertices of the simplex. We have

—cij
(vi,v5) = e s Ciicjj > 0.
On the other hand, (v;,vj) = — coshl;;; see Proposition 1 (ii). Consequently, coshi;; = \/%
Furthermore, the biorthogonality of u;, and v; on the one hand yields
n+1
(Wi, vj) = Zcik<ukavj> = cij(uj, vj)-
k=1

On the other hand,

—Cij v—detG
wi,vj) = (v/—ci; det Gui, v;) = \/—ciidet G—2— = —¢jj—.
i) = { 2 CiiCjj T VG
Therefore, we obtain
vV—det G
—Cij———— = ¢ij (U, V))

VCij

or
—detG
jj
Proposition 2 implies that (u;,v;) = —sinh h;. Hence,
V—detG
sinhhj = Y2
VCii

REMARK 1. (1) If v; is a finite vertex of a generalized simplex and v; is an ultraideal vertex then

coshl;j = ——2

(2) If v; and v; are ultraideal vertices of a generalized simplex then coshl;; = —
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4. The Laws of Sines and Cosines for a Hyperbolic Tetrahedron

Consider a tetrahedron T = T'(A, B,C, D, E, F) € H? with heights h1, ha, h3, hy4, corresponding to
the vertices vy, va, v3, vg respectively, and dihedral angles A, B, C, D, E, F at the edges of lengths [ 4,

IB, lc, Ip, lg, I respectively, as depicted in Fig. 1.

The necessary and sufficient conditions for the existence of a tetra-

1 —cosA —cosB
—cos A 1 —cosC

G = (= cosbijij=1234= | _ cosB —cosC 1
—cosF —cosE —cosD

Fig. 1

where G;; is the ¢jth minor of G, by C' = (c¢;j)i j=123.4-
Take the conjugate Gram matrix

-1 —coshlp —coshlg —coshlg
g | —coshlip -1 —coshlp —coshlp
G" = (v, v5)ij=1284 = —coshlg —coshlgp -1 —coshliy
—coshlc —coshlg —coshly -1
consisting of the elements
—Cij .
<Ui,’[)j> = ,] = 1727374;

see Proposition 4 (i) and Fig. 1. Put ¢}; = (—1)"G;

+j» Wwhere G7; is the ijth minor of G*.

Proposition 5. Take a hyperbolic tetrahedron T'. The following hold:

. (detG)’ ety
det G* = R det G = e
8 *\8
pr_ (@GP L (detG)*
pP3 (P*)3
i* [ detG* 4
P \detG )’
det G* . ) . .
ERYE = sinh hp sinh ho sinh hg sinh hy,

where P = c11c22¢33¢44, P* = ], C59C55¢)4, and hy, ho, h3, hy are the heights of T'.

and the adjoint matrix consisting of the elements c¢;; =

hedron in hyperbolic space are given in Theorem 1 in terms of the Gram
matrix. The tetrahedron is defined uniquely up to an isometry by the
collection of its dihedral angles. Denote the Gram matrix of T' by

—cos F
—cos &/
—cos D

)

1
(1) Gy,

REMARK 2. The relations (i) in Proposition 5 enable us to express det G* in terms of the dihedral

angles of T', and det GG, in terms of its edge lengths.
PROOF. (i) Because C = G~ 1det G,

det C = det G~ *(det G)* = (det G) "' (det G)* = (det G)>.
By the definition of G*

1 det G)? det G)?
detG* = — det C = (det G)” _ (de )

C11€22C33C44 C11€22€33C44 P
The equality det G = 7((163363*)3 is verified similarly.
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(ii) These equalities yield

(det G*)3>3 _ (detG*)°

* 3 _
Pdet G* = (det G) —( D )

Hence, P = (d(e IE,*G)?S. The equality P* = (de;:?)s is verified similarly.
(iii) The ratio of the equalities det G* = % and det G = (dapﬂ is

detG*  (detG)*  P*
detG P (detG*)3’

which implies that
P* (detG*)*

P (detG)*’
(iv) By (i)
det G*  (det G)?
detG P
On the other hand, Proposition 4 (ii) implies that

det G)? det G)?
sinh Ay sinh Ay sinh fg sinh g = — 9ot G)” (et G)
€11€22C33C44 P
Comparison of these expressions yields

det G*
det G
The next result was originally obtained by Coolidge [5] in a slightly different form and later reproven

by Fenchel [9]. The history of the question goes back to an 1877 article of Enrico d’Ovidio, and is narrated
in [10].

= sinh h sinh hg sinh A3 sinh hy. U

Theorem 2. For a hyperbolic tetrahedron T
sinAsinD  sinBsinE  sinCsinF [ detG
sinhlygsinhlp  sinhigsinhly  sinhlcosinhlp  V det G*'

PRrROOF. Use the following theorem of Jacobi; cp. [11, Theorem 2.5.3].

Theorem 3 (Jacobi). Take an n x n matrix A = (a;j)i j=1,..n with determinant det A = A. Denote
by C = (¢ij)ij=1,.n the matrix consisting of the elements c;; = (—1)"*7 A;;, where A;j is the ijth minor
of A. Then for eachk with1 <k <n

det(cij)ij—1, .k = A" det(aij)i jmrr1,. n-

Moreover, if o0 = (;1 ;n) is some permutation of {1,2,...,n} then for each k with 1 <k <n
1 ... n
det<ciqu>p’q:17~-~ak = (_]‘)UAkil det<aiqu>17:q:k+1,m,n'
Applying this theorem to the Gram matrix G and its adjoint matrix C for k = 2 we obtain
C11C22 — C%Q = (1 - COS2 D) det G.

Similarly,
c33ca4 — c34 = (1 — cos? A) det G.
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By Proposition 4 we have coshlp = \/061%22; thus,

2
Cig — C11C22
C11C22

sinhlp =

Similarly we establish that

2
C34 — C33C44
C33C44

sinhly =

Hence,

sin Asin D C11C22C33C44

sinhlgsinhlp —detG

Proposition 5 (i) implies that

VCi1caac33cas [ (det G)3 1 [ detG .
—detG V detG* (—detG) V detG*’

Theorem 4. Suppose that C,F and B, FE are pairs of dihedral angles at the opposite edges of
a hyperbolic tetrahedron T with lengths o, lr and g, g respectively. Then

cosCcosF —cosBcos E [ detG
coshlpcoshlg — coshlocoshly  V det G*'

PRrROOF. Applying Theorem 3 to the matrix G for k = 2, we obtain the equality

€13C24 — C14¢23 = (cos Bcos E — cos C' cos F') det G.

Proposition 4 implies that coshlgp = \/661%33; hence, c13 = coshlg./ci1ic33. We find co3, c14, and coq4
similarly.
The substitution of these expressions into the previous equality yields

(cos Bcos E — cos C cos F') det G = \/c11¢22¢33¢44(coshlp coshlp — coshlc coshlip).
For convenience, rewrite this as

(cos C cos F' — cos B cos E)(— det G) = /c11¢22¢33¢44(— cosh lc cosh iy + coshlg coshlp).

Hence,
cosCcos F —cos Becos EF B VP
coshlpcoshlg — coshlocoshlyp —detG’
Proposition 5 (i) implies
VP det G

—detG ~ VdetG*
The theorem is proved. [

Corollary 1. For a hyperbolic tetrahedron T' we have

cos(C +eF) —cos(B+0E)  [detG
cosh(lp + 0lg) — cosh(lc +elp)  V det G*’

where €,6 € {—1,1}.
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Proor. By Theorem 2

sinBsinE  sinCsinF [ detG
sinhigsinhlg  sinhlcosinhly  V det G*’

cosCcos F' —cos Becos B [ detG
coshlp coshlg — coshlc coshly  V det G*°
Using the properties of ratios and the trigonometric addition/subtraction formulas, we obtain

cosCcosF —cosBcosE +dsinBsin E — esinC'sin F
coshlpg coshlg — coshlg coshlp + dsinhlgsinhlg — esinh g sinh g

_cos(CHeF)—cos(B+0E)  [detG 0
~ cosh(ip + 6lg) —cosh(lc +elp)  V det G*'

5. The Multidimensional Law of Sines in Hyperbolic Space

and by Theorem 4

The following theorem is well known; cp. [12, p. 258].

Theorem 5 (a hyperbolic analog of Heron’s formula). The area S of a hyperbolic triangle with sides
a, b, c satisfies the relation

4 sin? § = sinh psinh(p ; a) Sing(f - b);inh(p —¢) , (1)
2 cosh” § cosh® 3 cosh” §

where p = %b‘*'c.

Proposition 4 (ii) for the hyperbolic tetrahedron 7" depicted in Fig. 1 yields

sinh h1+/c11 = sinh hoy/cos = sinh hsy/c33 = sinh hy\/caq = VvV —det G.
Similarly,
sinh h14/c}; = sinh ha\/c5, = sinh h3\/cis = sinh hyy/cj, = vV —det G*.
Hence, it is not difficult to notice the equalities

C11 C22 C33 C44 det G

(2)

The direct calculation of the elements c¢;;, cj;, ¢ = 1,2,3,4, of the adjoint matrices of T" and some
elementary trigonometric manipulations yield the following statement.

* % k% * "
i Ch Gy detG

Lemma 1. We have
sinhp123 sinh(p123 - lD) sinh(p123 - lE) Sinh(p123 — lF)
sinh po4 sinh(p124 — Ip) sinh(p124 — l¢) sinh(p124 — )
N sin P123 Sin(p123 - A) Sin(plgg - B) Sin(plgg - C)
B sin P124 sin(p124 — A) sin(p124 — F) sin(p124 — E) ’

_ Iptlp+l _ Iptlc _ A+B+C ALFLE
where piog = “PTEEE | proy = PICEE | g3 = AEZEE aditlh,

The explicit expression for the height of T' from Proposition 4 (ii) has the form

vV—detG
V1 —cos2 A —cos?2 B — cos2C — 2cos A cos BcosC

B v—detG
2+/sin p123 sin(pi2z — A) sin(p123 — B) sin(pr23 — C)’

, and p1og =

sinh hy =

where pP123 = A+§+C.
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At the international conference on analysis and geometry in honor of Academician Reshetnyak (Au-
gust 30-September 3, 1999, Novosibirsk, Russia) Buser asked whether there exists a three-dimensional
analog of the rule

sinh aq sinh hy = sinh a9 sinh hy = sinh a3 sinh hg

relating the side lengths and heights of a hyperbolic triangle which he used in [13] for computing the
spectrum of the Laplace-Beltrami operator on compact Riemann surfaces. The next statement answers
his question in the affirmative.

Proposition 6. Denote by Ay, Aa, A3, Ay the areas of the faces of the hyperbolic tetrahedron T
opposite to the vertices v, v, v3, v4 respectively. Then
lg

A l l l A l l
sin 71 sinh h1 cosh EA cosh EB cosh EF = sin 72 sinh ho cosh ?A cosh ?C cosh 5

A l l l l l
— sin = sinh hs cosh ‘B cosh - cosh -2 = sin =2 sinh h4 cosh D osh “E cosh £,
2 2 2 2 2 2 2 2

PROOF. Find the areas of the faces of T" with vertices v1, v9, v3 and v, vg, v4 by Theorem 5. Find
its heights hs, hy by (3). The substitution of the resulting expressions into the statement of Lemma 1
and some elementary manipulations yield

i A4 lp g 17 :
sin %' cosh & cosh *Z cosh *f  sinh h3

Az

= — . O
sin %* cosh %B cosh %C cosh %D sinh hy

Rivin [7] proposed the following variant of the multidimensional law of sines for an n-dimensional
Euclidean simplex ¢™. In the case n = 2 it is equivalent to the law of sines for a Euclidean triangle.

Theorem 6 (the multidimensional law of sines). Given an n-dimensional Euclidean simplex o™, for
all1 <i,j,k, 1 <n-+1 we have

AA: e
A o’ (4)
kAL Ckl
where A;, Aj, Ay, A, are the areas of the corresponding (n — 1)-dimensional faces of ", and c¢;; =
(=1)9Gy4, ci = (—1)**' Gy, where G;; and Gy are the ijth and kith minors of the Gram matrix.
The equality (4) has another equivalent form
hih _ cij
hihj Ckl ’
where h;,i = 1,2,...,n+ 1 is the height of ¢” corresponding to the ith vertex.
A hyperbolic analog of the last expression is as follows:

Theorem 7. Given an n-dimensional hyperbolic simplex o™ with heights h; and edge lengths l;;,
1,7 =1,2,...,n, we have
sinh by sinh by cosh l;; Cij

(6)

sinh h; sinh h; coshly, — cx’

where c¢;; = (—1)i+jGij, and G;j is the ijth minor of the Gram matrix.
PROOF. The substitution of the expressions

Cij . v—detG
coshl;; = , sinhh; = ——x—
for the heights and edge lengths of the simplex of Proposition 4 on the left-hand side of (6) yields a true
identity. O
In the case of a tetrahedron (n = 3) the hyperbolic analog of Theorem 6 follows from Theorem 7 and
Proposition 6.
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