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INTRODUCTION

Let 

 

�

 

 be a manifold with fundamental group 

 

Γ

 

 =

 

π

 

1

 

(

 

�

 

)

 

. Two coverings 

 

p

 

1

 

: 

 

�

 

1

 

 → 

 

�

 

 

 

and 

 

p

 

2

 

: 

 

�

 

2

 

 → 

 

�

 

are said to be equivalent if there exists a homeomor-
phism 

 

h

 

: 

 

�

 

1

 

 → 

 

�

 

2

 

 such that 

 

p

 

1

 

 

 

= 

 

p

 

2

 

 ° 

 

h

 

. According to
the general theory of covering spaces, any 

 

n

 

-fold cover-
ing is uniquely determined by a subgroup of index 

 

n

 

 in
the group 

 

Γ

 

. Moreover, two coverings are equivalent if
and only if the corresponding subgroups are conjugate
in 

 

Γ

 

. A similar assertion formulated in the language of
orbifolds is valid for branched coverings.

The problem about the number of nonequivalent
coverings over a Riemann surface with given branch
type goes back to the paper [4] by Hurwitz, in which the
number of coverings over the Riemann sphere with
given number of simple (of order two) branching points
was determined. Later, in [5], it was found that this
number has an adequate expression in terms of irreduc-
ible characters of symmetric groups, the theory of
which was developed by Frobenius in the beginning of
the twentieth century. The Hurwitz problem was con-
sidered by many authors. A detailed survey of the
related results is contained in [2, 9]. For closed Rie-
mann surfaces, this problem was completely solved in
[11]. However, of most interest is the case of unrami-
fied coverings. Let 

 

M

 

Γ

 

(

 

n

 

)

 

 denote the number of sub-
groups of index 

 

n

 

 in the group 

 

Γ

 

, and let 

 

N

 

Γ

 

(

 

n

 

)

 

 be the
number of conjugacy classes of such subgroups.
According to what was said above, 

 

N

 

Γ

 

(

 

n

 

)

 

 coincides
with the number of nonequivalent 

 

n

 

-fold coverings over
a manifold 

 

�

 

 with fundamental group 

 

Γ

 

. If 

 

�

 

 is a com-
pact surface with nonempty boundary of Euler charac-
teristic 

 

χ

 

(

 

�

 

) = 1 – 

 

r

 

, where 

 

r

 

 

 

≥

 

 

 

0

 

 (e.g., a disk with 

 

r

 

holes), then its fundamental group 

 

Γ

 

 = 

 

F

 

r

 

 is the free

group of rank 

 

r

 

. For this case, Hall calculated the num-
ber 

 

M

 

Γ

 

(

 

n

 

)

 

 [3] and Liskovets found the number 

 

N

 

Γ

 

(

 

n

 

)

 

 by
using his own method for calculating the number of
conjugacy classes of subgroups in free groups [6]. The
numbers 

 

M

 

Γ

 

(

 

n

 

)

 

 and 

 

N

 

Γ

 

(

 

n

 

)

 

 for the fundamental group of
a closed surface (orientable or not) were calculated in
[10, 12].

In the three-dimensional case, for a large class of
Seifert fibrations, the value of 

 

M

 

Γ

 

(

 

n

 

)

 

 was determined
in [8]. Asymptotic formulas for 

 

M

 

Γ

 

(

 

n

 

)

 

 in many impor-
tant cases were obtained by Müller and his coauthors
[14, 15].

In this paper, we suggest a new method for calculat-
ing the number 

 

N

 

Γ

 

(

 

n

 

)

 

 of conjugacy classes of subgroups
in any finitely generated group 

 

Γ

 

 (Theorem 1). This
result implies Theorems 5–7, which provide means for
counting coverings of given multiplicity over any man-
ifold with finitely generated fundamental group. The
earlier results about the number of coverings over a
compact surface (with or without boundary, orientable
or not) are the simplest special cases of these theorems;
for completeness, we cite them in Theorems 3–5.

The methods can also be used to count nonisomor-
phic maps on a Riemann surface. Earlier, this problem
was solved only for the sphere [7]. The method sug-
gested in this paper makes it possible to solve it for a
surface of any genus [13].

MAIN RESULT

Let Epi

 

(

 

K

 

, Z

 

l

 

)

 

 denote the set of all epimorphisms of
the group 

 

K

 

 to the cyclic group 

 

Z

 

l

 

 of order 

 

l

 

, and let 

 

|

 

E

 

|

 

be the cardinality of the set 

 

E

 

.

The main result of this paper is the following theo-
rem.

 

Theorem 1.

 

 

 

Let

 

 

 

Γ

 

 

 

be an arbitrary finitely generated
group

 

.
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Then, the number of conjugacy classes of subgroups
of index

 

 

 

n

 

 

 

in the group

 

 

 

Γ

 

 

 

is determined by the formula

where the sum

 

  

 

is taken over all subgroups

 

 

 

K

 

 

 

of

index

 

 

 

m

 

 

 

in the group

 

 

 

Γ

 

.
The proof of Theorem 1 relies on the following two

elementary lemmas. For a subgroup 

 

P

 

 of 

 

Γ

 

, let 

 

N

 

(

 

P, Γ)
denote the normalizer of P in the group Γ.

Lemma 1. The number of conjugacy classes of sub-
groups of index n in the group Γ is determined by the
formula

The proof of Lemma 1 is based on the following
considerations. Let E be a class of conjugate subgroups
of index n in Γ. Note that

Indeed, let P' ∈ E. Then, |E| = |Γ : N(P', Γ)|, and, for any
P ∈ E, the groups N(P, Γ)/P and N(P', Γ)/P' are isomor-
phic. We have

Therefore,

where the sum  is over all conjugacy classes E of

subgroups of index n in the group Γ.
Lemma 2. Let P be a subgroup of index n in the

group Γ. Then,

where φ(l) is the Euler function and the second sum is
over all subgroups K of index m in Γ containing P as a
normal subgroup such that K/P ≅ Zl. If there are no
such subgroups, then the corresponding sum is set
equal to zero.

NΓ n( ) 1
n
--- Epi K Zl,( ) ,

K Γ<
m

∑
l n

lm n=

∑=

K Γ<
m

∑

NΓ n( ) 1
n
--- N P Γ,( )/P .

P Γ<
n

∑=

N P Γ,( )/P
P E∈
∑ n.=

N P Γ,( )/P
P E∈
∑ E N P' Γ,( )/P'⋅=

=  Γ : N P' Γ,( ) N P' Γ,( ) : P'⋅ Γ : P' n.= =

nN n( ) n
E

∑ N P Γ,( )/P
P E∈
∑

E

∑= =

=  N P Γ,( )/P ,
P Γ<

n

∑

E

∑

N P Γ,( )/P φ l( ),
P � K Γ<

Zl m

∑
l n

lm n=

∑=

To prove Lemma 2, we set G = N(P, Γ)/P. Since P �
N(P, Γ) < Γ and P  Γ, it follows that the order of any
cyclic subgroup of G divides n. Note that there is a one-
to-one correspondence between the cyclic subgroups Zl

in G and the subgroups K satisfying the condition P 

K  Γ, where lm = n. Each cyclic subgroup Zl < G con-
tains precisely φ(l) elements of G generating Zl. There-
fore,

Theorem 1 is proved by applying Lemma 1 and Lemma 2
with lm = n. We have

The last equality is implied by the following observa-
tion. If P  K, then there exist precisely φ(l) epimor-

phisms ψ: K → Zl with Ker(ψ) = P.
Let Hom(Γ, Zl) be the set of all epimorphisms from

the group Γ onto the cyclic group Zl of order l. Since

|Hom(Γ, Zl)| = Epi(Γ, Zd)|, the Möbius inversion

formula implies the following result due to Jones [1].
Lemma 3. The following equality holds:

where µ(n) is the Möbius function.
This lemma substantially simplifies the calculation

of |Epi(Γ, Zl)| for a finitely generated group Γ. Indeed,
let H1(Γ) = Γ/[Γ, Γ] be the first homology group of Γ.
Suppose that H1(Γ) =  ⊕  ⊕ … ⊕  ⊕ Zr.
Then, the following lemma is valid.

Lemma 4. The following equality holds:

<
n

�
Zl

<
m

G φ l( ) 1
Zl G<
∑

l n

∑ φ l( ) 1
P � K Γ<

Zl m

∑
l n

∑= =

=  φ l( ).
P � K Γ<

Zl m

∑
l n

∑

nN n( ) N P Γ,( )/P
P Γ<

n

∑=

=  φ l( )
P � K Γ<

Zl m

∑
l n

∑
P Γ<

n

∑ φ l( )
P � K Γ<

Zl m

∑
P Γ<

n

∑
l n

∑=

=  φ l( )
P � K

Zl

∑
K Γ<

m

∑
l n

∑ Epi K Zl,( ) .
K Γ<

m

∑
l n

∑=

�
Zl

|
d l

∑

Epi Γ Zl,( ) µ l
d
---⎝ ⎠

⎛ ⎞ Hom Γ Zd,( ) ,
d l

∑=

Zm1
Zm2

Zms

Epi Γ Zl,( ) µ l
d
---⎝ ⎠

⎛ ⎞ m1 d,( ) m2 d,( )… ms d,( )dr,
d l

∑=
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where (m, d) is the greatest common divisor of m and d.

Proof. Note that |Hom(Zm, Zd)| = (m, d) and |Hom(Z,
Zd)| = d. Since the group Zd is Abelian, we have

The required assertion follows from Lemma 3.

In particular, we obtain the following corollary.

Corollary 1. (i) Let Fr be the free group of rank r.

Then, H1(Fr) = Zr and |Epi(Fr, Zl)| = dr.

(ii) Let Φg = a1, b1, a2, b2, …, ag, bg: ai, bi] = 1

be the fundamental group of a closed orientable surface
of genus g. Then, H1(Φg) = Z2g and |Epi(Φg, Zl)| =

d2g.

(iii) Let Λp = a1, a2, …, ap :  = 1  be the fun-

damental group of a closed nonorientable surface of
genus p. Then, H1(Λp) = Z2 ⊕ Zp – 1 and

COUNTING COVERINGS OVER SURFACES

Recall that the fundamental group π1(�) of a sur-
face with boundary � of Euler characteristic χ = 1 – r,
where r ≥ 0, is the free group Fr of rank r. An example
of such a surface is the disk �r with r holes. The first
corollary to Theorem 1 is the following result, which
was obtained earlier by Liskovets [6] by using compli-
cated combinatorial considerations.

Theorem 2. Let � be a surface with boundary with
fundamental group π1(�) = Fr.

Then, the number of nonequivalent n-fold coverings
of � equals

where M(m) is the number of subgroups of index m in
the group Fr.

Hom Γ Zd,( ) Hom H1 Γ( ) Zd,( )=

=  m1 d,( ) m2 d,( )… ms d,( )dr.

µ l
d
---⎝ ⎠

⎛ ⎞
d l

∑

∫ [
i 1=

g

∏

µ l
d
---⎝ ⎠

⎛ ⎞
d l

∑

∫ ai
2

i 1=

p

∏

Epi Λp Zl,( ) µ l
d
---⎝ ⎠

⎛ ⎞ 2 d,( )d p 1– .
d l

∑=

N n( ) 1
n
--- µ l

d
---⎝ ⎠

⎛ ⎞ d r 1–( )m 1+ M m( ),
d l

∑
l n

lm n=

∑=

Proof. Note that all subgroups of index m in Fr are
isomorphic to Γm = F(r – 1)m + 1. Theorem 1 and Corollary 1
(i) imply

where

which completes the proof.
Setting M(1) = 1, we obtain the number of sub-

groups of index m in the group Fr by the recursive for-
mula of Hall [3]:

The following result was obtained in [10] by a fairly
complicated method.

Theorem 3. Let � be a closed orientable surface
with fundamental group π1(�) = Φg.

Then, the number of nonequivalent n-fold coverings
of � is

where M(m) is the number of subgroups of index m in
the group Φg.

Proof. Let us apply the Riemann–Hurwitz formula,
according to which all subgroups of index m in Φg are
isomorphic to the group Km = Φ(g – 1)m + 1. By Theorem 1,
we have

where

is determined by using Corollary 1 (ii).
Let � be a closed nonorientable surface of genus p

with fundamental group π1(�) = Λp, and let  and

 be orientable and nonorientable m-fold coverings

of �, respectively. We set  = π1( ) and  =

π1( ). For convenience, we refer to  and  as
the orientable and nonorientable subgroups of index m
in Λp, respectively. The Riemann–Hurwitz formula

N n( ) 1
n
--- Epi Γm Zl,( )

l n
lm n=

∑ M m( ),⋅=

Epi Γm Zl,( ) µ l
d
---⎝ ⎠

⎛ ⎞ d r 1–( )m 1+ ,
d l

∑=

M m( ) m m!( )r 1– m j–( )!r 1– M j( ).
j 1=

m 1–

∑–=

N n( ) 1
n
--- µ l

d
---⎝ ⎠

⎛ ⎞ d2 g 1–( )m 2+ M m( ),
d l

∑
l n

lm n=

∑=

N n( ) 1
n
--- Epi Km Zl,( )

l n
lm n=

∑ M m( ),⋅=

Epi Km Zl,( ) µ l
d
---⎝ ⎠

⎛ ⎞ d2 g 1–( )m 2+

d l

∑=

�m
+

�m
–

Γm
+ �m

+ Γm
–

�m
– Γm

+ Γm
–
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gives 2γ( ) – 2 = m(p – 2) and γ( ) – 2 = m(p – 2),
where p = γ(�) is the genus of the surface �.

Therefore,  =  and  = .

By Theorem 1, the number N(n) of nonequivalent n-
fold coverings is

where M+(m) and M–(m) are the numbers of orientable
and nonorientable subgroups of index m in the group
Λp, respectively.

Corollary 1, (ii) and (iii) imply

Thus, we have proved the following theorem, which
was obtained earlier [12] by using a nontrivial combi-
natorial technique.

Theorem 4. Let � be a closed orientable surface
with fundamental group π1(�) = Λp.

Then, the number of nonequivalent n-fold coverings
is determined by

where M+(m) and M–(m) are the numbers of orientable
and nonorientable subgroups of index m in Λp, respec-
tively.

For completeness, note that if Γ = Φg or Λp, then the
number M(m) = Mν(m) of subgroups of index m in the
group Γ equals

where βk = , Dk is the set of irreducible rep-

resentations of the symmetry group Sk, fχ is the degree
of the representation χ, and ν = 2g – 2 or ν = p – 2,
respectively [10, 12]. Moreover, in the latter case,

�m
+ �m

–

Γm
+ Φm

2
---- p 2–( ) 1+

Γm
– Λm p 2–( ) 2+

N n( ) 1
n
--- Epi Γm

+ Zl,( ) M+ m( )⋅(
l n

lm n=

∑=

+ Epi Γm
– Zl,( ) M– m( ) ),⋅

Epi Γm
+ Zl,( ) µ l

d
---⎝ ⎠

⎛ ⎞ dm p 2–( ) 2+ ,
d l

∑=

Epi Γm
– Zl,( ) µ l

d
---⎝ ⎠

⎛ ⎞ 2 d,( )dm p 2–( ) 1+ .
d l

∑=

N n( ) 1
n
--- µ l

d
---⎝ ⎠

⎛ ⎞
d l

∑
l n

lm n=

∑=

× dm p 2–( ) 2+ M+ m( ) 2 d,( )dm p 2–( ) 1+ M– m( )+( ),

m
1–( )s 1+

s
------------------ βi1

βi2
…βis

,
i1 i2 … is+ + + m=

i1 i2 … is, , , 1≥

∑
s 1=

m

∑

k!

f χ-----⎝ ⎠
⎛ ⎞ ν

χ Dk∈
∑

M+(m) = 0 if m is odd, M+(m) = M2ν  if m is even,

and M–(m) = M(m) – M+(m). The number of subgroups
can also be found by the recursive formula

.

NONEQUIVALENT COVERINGS 
OF MANIFOLDS

In this section, we assume that all manifolds are
connected and have finitely generated fundamental
groups. We impose no constraints on their dimensions.
Manifolds may be closed or open, orientable or nor, and
they may have or may not have boundary. The follow-
ing theorem is a topological version of Theorem 1.

Theorem 5. Let � be a connected manifold with
finitely generated fundamental group Γ = π1(�).

Then, the number of nonequivalent n-fold coverings
� equals

where �m is the set of fundamental groups of the m-fold
coverings of � and MΦ, Γ(m) is the number of sub-
groups of index m in Γ isomorphic to the group Φ.

As a corollary to Theorem 5 and Lemma 3, we
obtain the following result.

Theorem 6. Let � be a connected manifold with
finitely generated fundamental group Γ = π1(�).

Then, the number of nonequivalent n-fold coverings
of � equals

where �m is the set of fundamental groups of the m-fold
coverings of � and MΦ, Γ(m) is the number of sub-
groups of index m in Γ isomorphic to the group Φ.

Suppose that � is a manifold, Γ = π1(�), and
H1(Γ) = Γ/[Γ, Γ] is the first homology group of �.
Since the group Zd is Abelian, there exists a one-to-one
correspondence between the sets Hom(Γ, Zd) and
Hom(H1(Γ), Zd). This gives the following homological
version of Theorem 6.

Theorem 7. Let � be a connected manifold with
finitely generated fundamental group Γ = π1(�).

m
2
----⎝ ⎠

⎛ ⎞

M m( ) mβm βm j– M j( ),  M 1( )
j 1=

m 1–

∑– 1= =

N n( ) 1
n
--- Epi Φ Zl,( ) MΦ Γ, m( ),⋅

Φ �m∈
∑

l n
lm n=

∑=

N n( ) 1
n
--- µ l

d
---⎝ ⎠

⎛ ⎞
d l

∑
Φ �m∈
∑

l n
lm n=

∑=

× Hom Φ Zd,( ) MΦ Γ, m( ),⋅



502

DOKLADY MATHEMATICS      Vol. 74      No. 1      2006

MEDNYKH

Then, the number of nonequivalent n-fold coverings
of � equals

where �m is the set of homology groups of the m-fold

coverings of � and (m) is the number of sub-
groups F of index m in the group Γ with H1(F) isomor-
phic to H.
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N n( ) 1
n
--- µ l

d
---⎝ ⎠

⎛ ⎞
d l

∑
H �m∈
∑

l n
lm n=

∑=

× Hom H Zd,( ) MH Γ,' m( ),⋅

MH Γ,'


