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ENUMERATION OF BRANCHED COVERINGS OF
NONORIENTABLE SURFACES WITH CYCLIC BRANCH POINTS∗
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Abstract. In this paper, n-fold branched coverings of a closed nonorientable surface S of
genus p with r ≥ 1 cyclic branch points (that is, such that all ramification points over them are of
multiplicity n) are considered. The number Np, r(n) of such coverings up to equivalence is evaluated
explicitly in a closed form (without using any complicated functions such as irreducible characters of
the symmetric groups). The obtained formulas depend on the parity of r and n. The method is based
on some previous enumerative results and techniques for nonorientable surfaces. In particular, we
generalize the approach developed for the counting of unbranched coverings of nonorientable surfaces
and make use of the analytical method of roots-of-unity sums.
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1. Introduction. Throughout this paper, a surface means a compact connected
2-manifold without boundary. Recall some known concepts from algebraic topology
[16]. A continuous mapping ρ : T → S from a surface T onto S is called a branched
covering of multiplicity n if there exists a finite subset B = {b1, . . . , br} of points in
S such that the restriction of ρ on T − ρ−1(B), ρ|T −ρ−1(B) : T − ρ−1(B) → S −B, is
an n-fold (n-sheeted) covering projection in the usual sense. The smallest subset B of
T which has this property is called the branch point set of ρ. At the neighborhood of
each point x ∈ ρ−1(B), the projection ρ is topologically equivalent to the complex map
z �→ zm with some natural number m. Such an x is called a ramification point of ρ, and
m is called the order of x. Denote by skm the number of ramification points of order
m of the mapping ρ in the preimage ρ−1(bk), where k = 1, . . . , r and m = 1, . . . , n.
We will call the (r × n)-matrix σ = (skm) the ramification type of the covering ρ. For

any k, (1s
k
1 · · ·nskn) is a partition of n, that is,

∑
m mskm = n.

Two branched coverings ρ : T → S and ρ′ : T ′ → S are considered to be equivalent
(or isomorphic) if there exists a homeomorphism η : T ′ → T such that ρ′ = ρ ◦ η.

The classical Hurwitz enumeration problem is to count nonequivalent n-fold co-
verings of S with a given ramification type σ. By now, only the nonorientable case
for branched coverings remains open. The orientable case was, in principle, solved
completely by Mednykh [18], as was the nonorientable case with unramified cove-
rings [20]. The aim of the present work is to adjust the method of the latter article to
coverings of nonorientable surfaces in the particular case when B is nonempty, skm = 0
for m < n, and skn = 1 for all k = 1, . . . , r. In other words, we consider the case when
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every branch point is cyclic; i.e., it is lifted to a unique ramification point (so that
the corresponding covering permutation is a full cycle of length n). Such a restriction
simplifies the situation considerably, allowing elimination of irreducible characters of
the symmetric groups in the formulas. Recently, this idea has been implemented
successfully by two of the present authors to the cases of orientable surfaces [11]. The
present work supplements this paper, extending its results to nonorientable surfaces.
A special technique of counting the solutions of systems of linear congruences by
sums of roots of unity (known also as Ramanujan’s sums) is applied. See [11] for
all necessary definitions, references, and additional explanations. For other useful
information concerning branched coverings of nonorientable surfaces, see [8, 9, 10].

2. Preliminary results. In what follows, S denotes a closed nonorientable sur-
face of genus p. The set of branch points B will be considered fixed. We denote by
Sn the symmetric groups on n symbols and by [g] the cycle type of a permutation
g ∈ Sn, that is, [g] = (1s1 · · ·nsn) if g consists of sm independent cycles of length
m, m = 1, . . . , n. For cycle types (partitions of n) we adopt the usual notational
agreement to drop empty parts m0 and to write m instead of m1. In particular, (n)
denotes the partition of n consisting of a sole part, n.

As follows from results of Hurwitz [4] and their subsequent generalizations, each
covering ρ of S with the ramification type σ = (skm) is uniquely determined by an
ordered (p + r)-tuple of permutations of degree n,

(a1, . . . , ap, c1, . . . , cr) ∈ Sp+r
n = Sn × Sn × · · · × Sn︸ ︷︷ ︸

p+r

,(1)

which satisfy the relations

p∏
j=1

a2
j

r∏
k=1

ck = l1 ,(2)

[ck] = (1s
k
1 · · ·nskn), k = 1, 2, . . . , r,(3)

and generate a transitive subgroup of Sn. Here l1 = l1n denotes the identity permu-
tation. Tuples satisfying the last condition will be called transitive. Two coverings
are equivalent if and only if the corresponding tuples are conjugate via a permutation
from Sn. The proof of these facts can be found, for example, in [2] or [8].

Denote by Bp, r, σ(n) the set of all tuples (transitive or not) of form (1) satisfying
(2) and (3), and select in Bp, r, σ(n) the subset Tp, r, σ(n) of transitive tuples. We set
Bp, r, σ(n) := |Bp, r, σ(n)| and Tp, r, σ(n) := |Tp, r, σ(n)|, where the vertical bars denote
the cardinality of the set.

2.1. A general formula. The following result based on general formulas in
terms of the irreducible characters for the number of solutions of equations in groups
is valid (see [7]; cf. also [3, 6, 11, 20]).

Proposition 2.1. The number Bp, r, σ(n) of elements of the set Bp, r, σ(n) is
determined by the formula

Bp, r, σ(n) = n!
∑

λ∈Dn

(
r∏

k=1

χλ
sk1 ···skn

1s
k
1 · sk1 ! · · ·nskn · skn!

)( n!

fλ

)p−2+r

,(4)
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where σ = (skm) is the ramification type, Dn is the set of all irreducible representations
of the group Sn, f

λ is the degree, and χλ
sk1 ...s

k
n

= χλ
[ck] is the character of permutations

of the type [ck] = (1s
k
1 · · ·nskn) corresponding to the representation λ.

As noted, unlike branched coverings over orientable surfaces considered in [11], no
general results have been obtained so far for the number of branched coverings over
nonorientable surfaces. Therefore we use here special tools sufficient for the particular
case under consideration, which generalize those given in [20] and [18]. Our task is
facilitated partially by a somewhat similar problem considered in [13] (see also [14])
for a class of three-dimensional manifolds.

2.2. Cyclic branch points. In the case of cyclic branch points, σ has a parti-
cular form:

[ck] = (n), k = 1, 2, . . . , r,(5)

that is, all ck are n-cycles. We denote by Tp, r(n) the corresponding number of tuples,
i.e., Tp, r(n) = |Tp, r, (n)r (n)| := Tp, r, σ(n), where σ is of form (5), i.e., skn = 1 and

skm = 0 for m < n and k = 1, . . . , r.
Our aim in this paper is to find the number of covering Np, r(n) up to equiva-

lence, which coincides with the number of orbit of the symmetric group Sn acting by
conjugation on the set Tp, r,(n)r (n). Notice also that Tp, r(n)/(n − 1)! is the number
of subgroups of index n of the corresponding fundamental group while Np, r(n) is the
number of conjugacy classes of such subgroups. In the literature, Tp, r(n) are also
called the corresponding Hurwitz numbers.

Theorem 2.2 (cf. [11]). For any n, r ≥ 1, and p ≥ 0, the number of tuples (1)
satisfying conditions (2) and (5) is the following:

Tp, r(n) =
(n!)p−1+r

nr

n−1∑
s=0

(−1)sr
(
n− 1

s

)−(p−2+r)

.(6)

Proof. The presence of full cycles ck ensures transitivity, so that Tp, r,(n)r (n) =
Bp, r,(n)r (n). This simplifies the enumeration considerably; in particular by Proposi-
tion 2.1 we have

Tp, r(n) = n!
∑

λ∈Dn

(χλ
(n)

n

)r( n!

fλ

)p−2+r

.(7)

Further we make use of the fact that characters χλ almost always vanish on the full
cycle (n). Namely,

χλ
(n) =

{
(−1)s if λ � (1s n−s), 0 ≤ s ≤ n− 1,
0 otherwise;

(8)

see, e.g., [5, Theorem 21.4] or [22, Example 7.67(a)]. Now, by the hook-length for-
mula [22, 7.21.6] we have

fλ =
n!

s!n(n− s− 1)!
=

(
n− 1

s

)
if λ � (1sn− s).(9)

Substituting (8) and (9) into (7) we obtain (6).
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Due to formula (6), in the counting of permutation tuples for the case of cyclic
branch points we have got rid of using characters.

Notice that in accordance with (6), Tp, r(n) = 0 for odd r and even n since in this
case a product of r full cycles is an odd permutation; thus, equality (2) is impossible.
However, we will not exclude this case from the subsequent consideration.

2.3. Calculations in the centralizer of a regular permutation. Since we
need to count transitive permutation tuples up to conjugacy, we make use of enu-
merative Burnside’s lemma. Accordingly we are interested in the automorphisms of
tuples, that is, their centralizers. It is well known that each automorphism is a regular
permutation. Hence, all permutations in such a tuple commute with this permutation
h. Thus they belong to its centralizer Z(h), which is of the form Z� 	 Sm, where � is
the order of the automorphism. Now, our approach (going back to [12] and [17]) is to
make necessary calculations in this wreath product so to take into account conditions
(2) and (5).

Denote by bg the action of a permutation g on an element b. Let us fix a regular
permutation h of degree n and order � (�m = n) which commutes with all permuta-
tions a1, a2, . . . , ap and c1, c2, . . . , cr. Belonging to Z(h) ∼= Z� 	Sm, they can be written
in the form

ai = (ti1, t
i
2, . . . , t

i
m; âi), i = 1, 2, . . . , p,

and

ck = (xk
1 , x

k
2 , . . . , x

k
m; ĉk), k = 1, . . . , r,

where all âi and ĉk belong to Sm and all tij and xk
j , j = 1, . . . ,m, belong to Z�. Now

using the formulas of the multiplication of permutations in Z� 	 Sm described, say,
in [14], we can represent (2) as the following system of congruences:

(10)

t1
j
+ t1

j
â
1
+ t2

j
â2
1
+ · · · + tp

j
â2
1
···â 2

p−1

+ tp

j
â2
1
···â 2

p−1
â
p
+ x1

j
â2
1
···â 2

p
+ x2

j
â2
1
···â 2

p ĉ1
+ · · · ≡ 0 (mod �)

for j = 1, . . . ,m together with the equation

â2
1â

2
2 · · · â2

pĉ1 · · · ĉr = l1m.(11)

It is easy to see (see [18]) that in these terms, condition (5) is expressed as follows:

(xk
1 + xk

2 + · · · + xk
m, �) = 1, k = 1, 2, . . . , r, r ≥ 1,(12)

where again (,) denotes the greatest common divisor, and

[ĉk] = (m), k = 1, 2, . . . , r.(13)

Now we are interested in the number of solutions of the system of (10) and (12).
This number proves (as we will see later) to be independent of a specific choice of the
tuple (a1, . . . , ap, c1, . . . , cr). More generally, let us consider an arbitrary (2p + r)-tuple
of permutations of degree m, (α1, β1, . . . , αp, βp, γ1, . . . , γr), where γ1, . . . , γr are full
cycles, and let M = Mp, r,m(�) denote the number of solutions of the system (12) and
(14) in Z�, where

t1jα1 + t1jβ1 + · · ·+ tpjαp + tp
jβp

+ x1
jγ1 + · · ·+ xr

jγr ≡ 0 (mod �), j = 1, . . . ,m.(14)
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The following lemma is a crucial technical result of this work.

Lemma 2.3. For any tuple (α1, β1, . . . , αp, βp, γ1, . . . , γr) ∈ S2p+r
m , where all γi are

full cycles, the number of solutions of the system of (12) and (14) in Z� is determined
by the following formula:

Mp, r,m(�) = �m(p−1+r)−rφ(�)r ×

⎧⎨⎩
1 for � odd,
2 for � even, r even,
0 for � even, r odd,

(15)

where φ(�) is the Euler function.

Proof. Generally we make use of the same technique as in the appendix of [13]
(see also [20]). Denoting by fj the left-hand-side expressions of (14), we introduce the
following polynomials of z1, . . . , zm :

P (z1, . . . , zm) :=
∑

∀i,j,k 1≤ti
j
,xk

j
≤�

(xk
1
+···+xk

m,�)=1

m∏
j=1

z
fj
j .(16)

Then the number of solutions of the system (12) and (14) modulo � coincides with the
sum of the coefficients of P (z1, . . . , zm), all indices of which are divisible by �, and,
consequently, is given by the formula

M =
1

�m

∑
1≤�1≤�

...
1≤�m≤�

P (ε�1 , . . . , ε�m),(17)

where ε = �
√

1 = exp 2πi
� , i =

√
−1.

Changing the order of the factors in (16) by applying α−1
i , β−1

i , and γ−1
i to sub-

scripts, one can represent
∏m

j=1 z
fj
j as follows:

P (z1, . . . , zm) =
∑

1≤ti
j
,xk

j
≤�

(xk
1
+···+xk

m,�)=1

m∏
j=1

(
z
t1j

j
α
−1
1

z
t1j

j
β
−1
1

· · · zt
p
j

j
α
−1
p

z
tp
j

j
β
−1
p

z
x1
j

j
γ
−1
1

· · · zx
r
j

jγ
−1
r

)
,

whence by elementary, although tedious, transformations,

P (ε�1 , . . . , ε�m)

=
∑

1≤ti
j
,xk

j
≤�

(xk
1
+···+xk

m,�)=1

m∏
j=1

ε
t1j (�

j
α
−1
1

+�
j
β
−1
1

)

· · · ε
tp
j
(�

j
α
−1
p

+�
j
β
−1
p

)

ε
x1
j�

j
γ
−1
1 · · · ε

xr
j �

j
γ
−1
r

=

m∏
j=1

⎛⎝ �∑
t1
j
=1

ε
t1j (�

j
α
−1
1

+�
j
β
−1
1

)

· · ·
�∑

tp
j
=1

ε
tp
j
(�

j
α
−1
p

+�
j
β
−1
p

)

⎞⎠ r∏
k=1

∑
1≤xk

1
,...,xk

m≤�

(xk
1
+···+xk

m,�)=1

ε
xk
j �

j
γ
−1
k

=

m∏
j=1

[�δ(0, �
j
α
−1
1

+ �
j
β
−1
1

) · · · �δ(0, �
j
α
−1
p

+ �
j
β
−1
p

)]δ(�1, �2, . . . , �m)Φ(�1, �)
r�r(m−1).

(18)
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Here we use a multivariable δ-function defined as follows:

δ(a, b, c, . . .) :=

{
1 if a ≡ b ≡ c ≡ . . . (mod �),
0 otherwise.

The last equality in (18) is based on the following claim.
Claim 1. Σ :=

∑
1≤x1,...,xm≤�

(x1+···+xm,�)=1

εxj�j = δ(�1, . . . , �m)�m−1Φ(�1, �), where Φ(u, �)

is the von Sterneck function (known also as Ramanujan’s sum): the sum of the prim-
itive �th roots of unity in the power u:

Φ(u, �) :=
∑

x: (x,�)=1

εxu.

In turn, Claim 1 relies on the following well-known identity.
Claim 2. For any two integers a and b, we have

∑�
x=1 ε

x(a−b) = �δ(a, b).
We have

Σ =

�∑
x1=1

ε(�1−�m)x1 · · ·
�∑

xm−1=1

ε(�m−1−�m)xm−1

∑
(x,�)=1

ε�mx = δ(�1, . . . , �m)�m−1Φ(�m, �),

where x := x1 + · · · + xm. Besides, δ(�1, . . . , �m)Φ(�m, �) = δ(�1, . . . , �m)Φ(�1, �)
since both products vanish unless �1 = �2 = · · · = �m. These arguments prove
Claim 1.

Return to the proof of Lemma 2.3. The factor δ(�1, . . . , �m) in the last expres-
sion in (18) shows that the polynomial P (ε�1 , . . . , ε�m) does not vanish only if all �j
coincide,

�1 = · · · = �m = λ,(19)

in which case P (ε�1 , . . . , ε�m) = �mp+(m−1)rΦ(λ, �)rΔ, where

Δ =

m∏
j=1

[δ(�
j
α
−1
1

,−�
j
β
−1
1

) · · · δ(�
j
α
−1
p

,−�
j
β
−1
p

)].(20)

Thus, Δ is always equal to 0 or 1. Now it is clear that (regardless of αi, βi) in view
of (19), Δ does not vanish if and only if λ ≡ −λ (mod �) or, equivalently,

2λ ≡ 0 (mod �).(21)

This equation has only the trivial solution λ ≡ 0 (mod �) if � is odd, and it has the
additional solution λ ≡ �/2 (mod �) if � is even.

We conclude that

P (ε�1 , . . . , ε�m) = �mp+(m−1)rΦ(0, �)r

if �1 = · · · = �m = 0,

P (ε�1 , . . . , ε�m) = �mp+(m−1)rΦ(�/2, �)r

if � is even, and �1 = · · · = �m = �/2, and

P (ε�1 , . . . , ε�m) = 0



394 J. H. KWAK, A. MEDNYKH, AND V. LISKOVETS

in all other cases.
As was shown by Hölder,

Φ(x, n) =
φ(n)

φ( n
(x,n) )

μ

(
n

(x, n)

)
,(22)

where μ(n) is the number-theoretic Möbius function [1, p. 164] (cf. [21]). It follows
that Φ(0, �) = φ(�) and Φ(�/2, �) = −φ(�).

Substitute these values into the above expressions for P (ε�1 , . . . , ε�m) and substi-
tute them into (17). Taking into account that φ(�)r + (−φ(�))r = 0 if r is odd and
φ(�)r + (−φ(�))r = 2φ(�)r if r is even, we finally obtain (15).

3. Enumeration. The main result of this paper is the following.
Theorem 3.1. The number Np, r(n) of nonequivalent n-fold coverings of a closed

nonorientable surface of genus p with r ≥ 1 cyclic branch points is expressed by the
following formulas:

Np, r(n)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

np−2
∑
�|n

�m=n

�(m−1)νφ(�)r(2, �)

m−1∑
s=0

[s!(m−s−1)!]ν for r even,

np−2
∑
�|n

�m=n

�(m−1)νφ(�)r
m−1∑
s=0

(−1)s[s!(m−s−1)!]ν for r odd, n odd,

0 for r odd, n even,

(23)

where ν := p − 2 + r is the characteristic of S − B, φ(�) is the Euler function, and
(2, �) denotes the greatest common divisor of the numbers 2 and �.

Proof. Recall that the number of coverings Np, r(n) coincides with the number of
orbits of the symmetric group Sn acting by conjugation on the set Tp, r,(n)r (n). By
applying Burnside’s lemma we obtain

Np, r(n) =
1

n!

∑
�|n

�m=n

n!

m!�m
T̃p, r(�

m),(24)

where T̃p, r(�
m) denotes the number of tuples (1) satisfying (2) and (5) and commuting

with a fixed regular permutation h of order �. As we saw, these are permutation tuples
satisfying (in terms of the centralizer Z(h)) conditions (10)–(13). Since restrictions
(10) and (12) are independent of (11) and (13), multiplying the numbers of solutions of
both problems, we obtain in the designations adopted above the following proposition.

Proposition 3.2.

T̃p, r(�
m) = Tp, r(m)Mp, r,m(�).(25)

Now we make use of formulas (6) and (15). Notice that the last factor in (15) can
be represented equivalently as follows:⎧⎨⎩

(2, �) for r even,
1 for r odd, � odd,
0 for r odd, � even.

(26)
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Substituting expressions (25), (6), and (15) (taking into account (26)) into (24), after
elementary transformations we obtain the first two formulas (23). Now consider the
last case, when r is odd and n is even. According to (15) (or (26)), for even � dividing
n, the factor Mp, r,m(�) = 0. Now suppose that � is odd. Then m is even. In this

case,
∑m−1

s=0 (−1)s
(
m−1
s

)−ν
= 0 since

(
m−1
s

)−ν
=

(
m−1

m−1−s

)−ν
and s and m− 1 − s are

of different parity. Thus, Tp,r(m) = 0 and Np, r(n) = 0.
Remark 1. In our case, the covering surface is nonorientable. Indeed, since the

permutation c1 is a full cycle, for any permutation a1 ∈ Sn there exists an integer
k such that the permutation a1c

k
1 fixes the element 1. The word a1c

k
1 contains an

odd number of letters aj ; therefore, by the familiar criterion [2], this means that the
corresponding covering surface is nonorientable. Besides, by the Riemann–Hurwitz
formula it is of characteristic nν.

Remark 2. It is interesting to compare (23) with the formula for the number
No

g, r(n) of the corresponding coverings of an orientable surface of genus g. According
to [11] (in a slightly modified form),

No
g, r(n) = n2g−2

∑
�|n

�m=n

�(m−1)νψ(r, �)

m−1∑
s=0

(−1)sr[s!(m− s− 1)!]ν ,(27)

where ψ(r, �) :=
∑�

k=1 Φ(k, �)r and ν := 2g− 2+ r. At the same time, for the number
of the corresponding permutation tuples T o

g, r(n) we conclude from [11] and formula
(6) above for p = 2g that

T o
g, r(n) = T2g, r(n).(28)

Now let us express Np, r(n) in terms of Tp, r(m), m|n. Formula (6) can be rewritten
in the following form:

Tp, r(n) = n!np−2
n−1∑
s=0

(−1)sr[s!(n− s− 1)!]ν .(29)

In (23) we can join the first two formulas with the help of the greatest common divisor
of three numbers (2, �, r). After that, substituting there the right-hand-side expression
of (29), we obtain

Np, r(n) =

⎧⎪⎨⎪⎩
0 for r odd, n even,

np−2
∑
�|n

�m=n

�(m−1)νφ(�)r(2, �, r)

mp−1

Tp, r(m)

(m− 1)!
otherwise.(30)

For comparison, formula (27) can be rewritten in a similar form as follows:

No
g, r(n) = n2g−2

∑
�|n

�m=n

�(m−1)νψ(r, �)

m2g−1

T o
g, r(m)

(m− 1)!
.(31)

Here are the values of Np, r(n) for n ≤ 7. For even r,

Np, r(1) = 1,
Np, r(2) = 2p,
Np, r(3) = 3p−2(2ν+1 + 1 + 2r),
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Np, r(4) = 2 · 4p−2(6ν + 3 · 2ν + 2r),
Np, r(5) = 5p−2(2 · 24ν + 2 · 6ν + 4ν + 4r),
Np, r(6) = 2 · 6p−2(120ν + 24ν + 12ν + 3ν · 2r + 2 · 8ν + 4ν + 2r),
Np, r(7) = 7p−2(2 · 720ν + 2 · 120ν + 2 · 48ν + 36ν + 6r),

and for odd r and odd n, Np, r(1) = 1,

Np, r(3) = 3p−2(2ν+1 − 1 + 2r),
Np, r(5) = 5p−2(2 · 24ν − 2 · 6ν + 4ν + 4r),
Np, r(7) = 7p−2(2 · 720ν − 2 · 120ν + 2 · 48ν − 36ν + 6r).

3.1. Coverings of the projective plane and the Klein bottle. Consider
now the particular cases when ν = 1. These are coverings of the projective plane and
the Klein bottle with two and one branch points, respectively.

Corollary 3.3. The number of nonequivalent n-fold coverings of the projective
plane with two cyclic branch points is given by the formula

N1, 2(n) =
1

n

∑
�|n

�m=n

(2, �)φ(�)2�m−1
m−1∑
s=0

s!(m− s− 1)!.(32)

In particular, if n = q is an odd prime, then

N1, 2(q) =
1

q

(
(q − 1)2 +

q−1∑
s=0

s!(q − s− 1)!

)
.

The numerical values for n = 1, 2, 3, 4, 5, 6, 7, 8 are 1, 2, 3, 8, 16, 64, 264, 1580.
Formula (32) can be slightly simplified due to the following familiar identity [23]

(see also [15] and references therein):

n∑
s=0

s!(n− s)! =
(n + 1)!

2n

n∑
j=0

2j

j + 1
.(33)

Corollary 3.4. The number of nonequivalent n-fold coverings of the Klein
bottle with one cyclic branch point is given by the formula

N2, 1(n) = 2
∑
�|n

�m=n

m!�m−1φ(�)

m + 1
(34)

if n is odd and N2, 1(n) = 0 if n is even. In particular, if n = q is an odd prime, then
N2, 1(q) = q − 1 + 2q!/(q + 1).

Proof. N2, 1(n) vanishes for even n, and for odd n we should take the second
formula of (23) with ν = 1. Now for odd m, the following elementary identity is
valid [19] (see also [22, Example 7.67(c)]):

m−1∑
s=0

(−1)s[s!(m− s− 1)!] =
2m!

m + 1
;(35)

the corollary follows.
The numerical values for n = 1, 3, 5, 7, 9, 11 are 1, 5, 44, 1266, 72636, 6652810.
Other numerical data for the projective plane and the Klein bottle are contained

in Tables 3.1 and 3.2.
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Table 3.1

The number of n-sheeted coverings of the projective plane (p = 1) with r cyclic branch points.

n\r 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 2 0 2 0 2 0
3 1 3 5 11 21 43 85
4 0 8 0 128 0 3968 0
5 1 16 232 5680 132448 3189184 76426624
6 0 64 0 581696 0 8297164544 0
7 1 264 144504 107174448 76724477856 55290551845824 39803169903525504

Table 3.2

The number of n-sheeted coverings of the Klein bottle (p = 2) with r cyclic branch points.

n\r 1 2 3 4 5 6
1 1 1 1 1 1 1
2 0 4 0 4 0 4
3 5 13 23 49 95 193
4 0 104 0 2720 0 93824
5 44 1256 27344 666656 15911744 382307456
6 0 30608 0 415444544 0 5972357328128
7 1266 1071540 743214744 537904137744 386934209149536 278634137614009920

3.2. Asymptotics. It is evident that in formula (23) for fixed p and r and
growing n, the term with � = 1 dominates (of course, unless ν = 0 or r is odd and n
is even). In turn, the dominating terms of its internal sum for � = 1 correspond to
s = 0 and s = n− 1 and are equal to (n− 1)!ν . Therefore we have the next corollary.

Corollary 3.5. Asymptotically for fixed p and r (except for p = r = 1),

Np, r(n) ∼ 2
n!ν

nr
= 2n!p−2(n− 1)!r(36)

as n → ∞, where n is odd if r is odd.
By (6), Tp, r(n) ∼ 2n!p−1(n− 1)!r as n → ∞, with the same restrictions. So

Np, r(n) ∼ Tp, r(n)

n!
.

Notice that n!p(n − 1)!r is the number of tuples (1) satisfying (5). As we see, (2)
diminishes this number asymptotically n!/2 times.

Acknowledgment. The second and third authors are thankful to Com2MaC of
the Pohang University of Science and Technology for support and hospitality during
their visit to Pohang, when the results of the present paper were obtained.

REFERENCES

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] C. L. Ezell, Branch point structure of covering maps onto nonorientable surfaces, Trans.

Amer. Math. Soc., 243 (1978), pp. 123–133.
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