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Abstract

The number Nn,g,r of nonisomorphic n-fold branched coverings of a given closed ori-
entable surface S of genus g with r ! 1 branch points of order n is determined. The result
is given in terms of the Euler characteristic of the surface S with r points removed and
the von Sterneck–Ramanujan function Φ(k, n) =

∑
(d,n)=1 exp

(
2πikd

n

)
. More precisely, if

ν = 2g − 2 + r then

Nn,g,r =
∑

"|n, " m=n

(m! "m)ν
"∑

k=1

(
Φ(k, ")

n

)r m−1∑

s=0

(−1)sr

(
m − 1

s

)−ν

.

1. Introduction

Throughout this paper, a surface means a compact connected 2-manifold
without boundary.

A continuous map π : T → S from a surface T onto S is called a branched
covering if there exists a finite subset B = {b1, b2, . . . , br} of S such that
the restriction of π on T − π−1(B), π|T−π−1(B) : T − π−1(B) → S − B, is a
covering projection in the usual sense. The smallest subset B of T which
has this property is called the branch set. At each point x ∈ π−1(B), the
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projection π is topologically equivalent to the complex map z → zk for a
natural number k. We call x the branch point of π and the number k the
order of x. Denote by sp

k the number of branch points of order k of the map π

in the preimage π−1(bp), where p = 1,2, . . . , r and k = 1,2, . . . , n. We call the
r×n matrix σ = (sp

k) the ramification type of the covering π. Two branched
coverings π : T → S and π′ : T ′ → S are equivalent (or isomorphic) if there
exists a homomorphism h : T → T ′ such that π = π′ ◦ h.

Let S and σ be as above and let g be the genus of the surface S. Then,
the classical Hurwitz enumeration problem can be stated in the following
way.

Hurwitz enumeration problem. Determine the number Nn,g,σ of
nonequivalent coverings of multiplicity n of a surface S of genus g with a
given ramification type σ.

Hurwitz [7], [8] constructed a generating function for the number of non-
equivalent coverings of the sphere having only simple points (of order two)
and proved that the number of such coverings can be expressed in terms of
irreducible characters of the symmetric group. Röhrl [20] obtained upper
and lower estimates for the number of nonequivalent coverings with a given
ramification type. Some partial solutions of the problem were obtained in
[10]-[15] and [19]. In particular, the number of coverings with a given branch
set without restriction on the ramification type were obtained in [12]. The
complete solution of the Hurwitz enumeration problem is contained in [16].
The solution is given in terms of irreducible characters of the symmetric
group which makes it very complicated. It was known just a few cases [17],
[18], [10], [11] when it is possible to avoid characters of symmetric groups
for calculation the number of coverings. Recently, some new results (see,
for example [5] and [6]) were obtained to make it clear that, in many cases,
the number of coverings can be expressed in terms of the number theoreti-
cal functions. In the present paper, we will show that this takes a place for
the covering whose branch orders coincide with the multiplicity. In two par-
tial cases (see Corollary 1 and Corollary 2 below) this result was obtained
early by the second named author [18].

2. Preliminaries

Let π : T → S be a branched covering with branch set B = {b1, b2, . . . , br}
of ramification type σ = (sp

k)p=1,2,...,r,
k=1,2,...,n

. The set B will be considered fixed in

what follows. We denote by Sn the symmetric groups on n symbols and
by (1s12s2 · · ·nsn) a permutation from Sn consisting of sk cycles of length
k, k = 1, 2, . . . , n. It follows from the results of Hurwitz that each cover-
ing π with ramification type σ is uniquely defined by the ordered tuple of
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permutations

(1)
(
a1, b1, . . . , ag, bg, (1s1

1 · · ·ns1
n), (1s2

1 · · ·ns2
n), . . . , (1sr

1 · · ·nsr
n)

)
∈ S2g+r

n

satisfying the relation

(2)
g∏

i=1

[ai, bi]
r∏

p=1

(1sp
12sp

2 · · ·nsp
n) = 1

and generating a transitive subgroup of Sn (transitive tuples). Two cover-
ings are equivalent if and only if the corresponding tuples are conjugate via
a permutation from Sn. The proof of these facts can be found, for example,
in [3] and [12].

Denote by Bn,g,σ the set of all tuples of the form (1) satisfying equation
(2) and select in Bn,g,σ a subset Tn,g,σ formed by transitive tuples. We set
Bn,g,σ = |Bn,g,σ| and Tn,g,σ = |Tn,g,σ|, where |X| denotes the cardinality of a
set X. The following results have been obtained in [16].

Theorem 1. The number Bn,g,σ of elements of the set Bn,g,σ is defined
by the formula

(3) n!
∑

λ∈Dn

r∏

p=1

χλ
sp
1sp

2···s
p
n

1sp
1sp

1! · 2sp
2sp

2! · · ·nsp
nsp

n!

(
n!
fλ

)2g−2+r

,

where Dn is the set of all irreducible representations of the group Sn, fλ

is the degree and χλ
sp
1sp

2···s
p
n

the character of the permutation (1s12s2 · · ·nsn)
corresponding to the representation λ.

Theorem 2. The number Tn,g,σ of elements of the set Tn,g,σ is defined
by the formula

n∑

k=1

(−1)k+1

k

∑

n1+n2+...+nk=n
σ1+σ2+···+σk=σ

(
n

n1, n2, . . . , nk

)
Bn1,g,σ1 · Bn2,g,σ2 · · ·Bnk,g,σk .

(4)

Denote by µ(n), ϕ(n) and Φ(x, n) the Möbius, Euler and von Sterneck–
Ramanujan functions respectively. The relationship between them is given
by the formula

Φ(x, n) =
ϕ(n)

ϕ( n
(x,n))

µ

(
n

(x, n)

)
,
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where (x, n) is the greatest common divisor of x and n. It was shown by
O. Hölder that Φ(x,n) coincides with the Ramanujan sum

∑
(d,n)=1

exp (2 ikd
n ).

For the proof, see ([1], p. 164).

3. Coverings whose orders coincide with multiplicity

In this section, we consider n-fold coverings of a compact oriented surface
S of genus g having r branch points of order n. We will assume that r ! 1.
The case r = 0 was considered in [19]. The ramification type of the covering
under investigation is given by the matrix σ = (sp

k)p=1,2,...,r
k=1,2,...,n

, where sp
n = 1,

p = 1, 2, . . . , r and sp
k = 0 if k = 1, 2, . . . , n− 1. In this case, each of r branch

points of the covering is determined by a cycle (n1) of the length n. To
indicate this property we will use notation Bn,g,r instead of Bn,g,σ and similar
notations for Tn,g,σ, Tn,g,σ and Nn,g,σ. Since r ! 1 each tuple of the set Bn,g,r
is transitive. Hence, Bn,g,r = Tn,g,r and the number of elements of the set
Tn,g,r is defined by Theorem 1. It gives

Lemma 1. The number Tm,g,r of elements of the set Tm,g,r is defined by
the formula

Tm,g,r = m!
∑

λ∈Dm

(
χλ

m

m

)r (
m!
fλ

)2g−2+r

,

where Dm is the set of all irreducible representations of the group Sm, fλ

is the degree and χλ
m the character of the cycle (m1) of the length m corre-

sponding to the representation λ.
Recall that the number of covering Nn,g,r coincides with the number of

orbit of symmetric group Sn acting by conjugation on the set Tn,g,r. By
applying Burnside’s lemma we obtain ([18], formulae (17) and (18))

Lemma 2. The number Nn,g,r of nonisomorphic n-fold branched cover-
ings of a given closed orientable surface S of genus g with r, r ! 1 branch
points of order n is given by the formula

(5) Nn,g,r =
1
n

∑

$|n
$ m=n

&(2g−2)m

(m − 1)!
· Tm,g,r · Fr(&),

where

(6) Fr(&) = &
$∑

x=1

(
Φ(x, &)

&

)r

,
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and Tm,g,r is the same as in Lemma 1.

Note [18] that the function Fr(&) is multiplicative with respect to & and
has the following properties

F1(&) = δ1,$, F2(&) = ϕ(&), F3(&) = ϕ(&)
s∏

i=1

pi − 2
pi

,

F4(&) = ϕ(&)
s∏

i=1

p2
i − 3pi + 3

p2
i

,

where δ1,$ is the Kronecker symbol, ϕ(&) is the Euler function and the prod-
uct is taken over all prime divisors of &. The structure of the function Tm,g,r
is much more complicated. It was shown in [18] that in two particular cases
(g, r) = (0, 3) and (g, r) = (1, 1) this function can be expressed in number
theoretical terms. The following lemma makes us sure that this is true for
all g ! 0 and r ! 1.

Lemma 3. The number Tm,g,r of elements of the set Tm,g,r is defined by
the formula

(7) Tm,g,r =
(m!)ν+1

mr

m−1∑

s=0

(−1)sr
(

m − 1
s

)−ν

,

where ν = 2g − 2 + r.

Proof. By definition, Tm,g,r is the number of solutions of the equation∏g
i=1[ai, bi]

∏r
j=1 ej = 1 in the symmetric group Sm, where ej , j = 1, 2, . . . , r

are m−cycles and ai, bi, i = 1, 2, . . . , g are arbitrary substitutions. Note,
since r ! 1, the group generated by ai, bi, i = 1, 2, . . . , g, ej , j = 1, 2, . . . , r
is transitive in Sm. By Lemma 1 we have

(8) Tm,g,r = m!
∑

λ∈Dm

(
χλ

m

m

)r (
m!
fλ

)2g−2+r

.

For the case r = 0 this formula was obtained by Frobenius and Schur [4]. To
avoid the characters of the symmetric group in our calculations we note ([9],
Theorem 21.4) that

χλ
m =

{
(−1)s if λ & (1s, m − s), 0 " s " m − 1
0 otherwise.
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By the hook formula [9] for any λ & (1s, m − s), we have

fλ =
m!

s! · m · (m − s − 1)!
=

(m − 1)!
s! (m − s − 1)!

=
(

m − 1
s

)
.

Putting the last two formulae into (8) we obtain (7). #
We remark that the statement of Lemma 2 for the case g = 0 can be

found in ([21], p. 471).

4. Main results

The main result of this paper is the following
Theorem 3. The number Nn,g,r of nonisomorphic n-fold branched cov-

erings of a given closed orientable surface S of genus g with r, r ! 1 branch
points of order n is given by the formula

Nn,g,r =
∑

$|n, $ m=n

(m!&m)ν
$∑

k=1

(
Φ(k, &)

n

)r m−1∑

s=0

(−1)sr
(

m − 1
s

)−ν

,

where ν = 2g− 2+ r and Φ(k,n) =
∑

(d,n)=1 exp(2πikd
n ) is the von Sterneck–

Ramanujan function.

Proof. By Lemmas 2 and 3, we have

Nn,g,r =
1
n

∑

$|n, $ m=n

&(2g−2+r)m

(m − 1)!
· Tm,g,r · Fr(&)

=
1
n

∑

$|n, $ m=n

&νm

(m − 1)!
· (m!)ν+1

mr

m−1∑

s=0

(−1)sr
(

m − 1
s

)−ν

· &
$∑

x=1

(
Φ(x, &)

&

)r

=
∑

$|n, $ m=n

(m! &m)ν
$∑

k=1

(
Φ(k, &)

n

)r m−1∑

s=0

(−1)sr
(

m − 1
s

)−ν

. #

To obtain some consequences, we need the following elementary lemma.
Lemma 4. For (g, r) = (0, 3) and (g, r) = (1, 1) we have

m−1∑

s=0

(−1)sr
(

m − 1
s

)−ν

=
2m

m + 1
δm, odd,
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where δm, odd = 1 if n is odd, and is equal to 0 otherwise.

Proof. Note that, in both cases (g, r) = (0, 3) and (g, r) = (1, 1), the
number r is odd and ν = 2g − 2 + r = 1. Hence

m−1∑

s=0

(−1)sr
(

m − 1
s

)−ν

=
m−1∑

s=0

(−1)s
(

m − 1
s

)−1

=
2m

m + 1
δm, odd.

The last formula easily follows from the identity
(

m − 1
s

)−1

=
m

m + 1

((
m

s

)−1

+
(

m

s + 1

)−1
)

. #

As an immediate consequence of the Theorem 3 and Lemma 4, we obtain
the following two corollaries [18].

Corollary 1. The number Nn,0,3 of nonisomorphic n-fold branched
coverings of the sphere with three branch points of order n is given by the
formula

Nn,0,3 =
1
n

∑

$|n, $ m=n

2&m(m − 1)!
m + 1

F3(&)

if n is odd, and is equal to zero, if n is even. We set F3(&) = ϕ(&)
s∏

i=1

pi−2
pi

,

where the product is taken over all prime divisors of &.

Proof. We note by (6) that
∑$

k=1

(
Φ(k, &)

)3 = &2 F3(&) and F3(&) = 0
for & even. Hence F3(&) = F3(&) · δ$,odd. By Theorem 3 and Lemma 4 we have

Nn,0,3 =
∑

$|n, $ m=n

m! &m · &
2 F3(&)

n3
δ$, odd · 2m

m + 1
δm, odd

=
1
n

∑

$|n, $ m=n

2&m(m − 1)!
m + 1

F3(&) · δn, odd,

which is equivalent to the statement of the corollary. #
Corollary 2. The number Nn,1,1 of nonisomorphic n-fold branched cov-

erings of the torus with one branch point of order n is given by the formula

Nn,1,1 =
2n!

n + 1

if n is odd, and is equal to zero if n is even.



8 J. H. KWAK and A. MEDNYKH

Proof. By the formula (6) we have
∑$

k=1 Φ(k, &) = F1(&), where F1(&) =
δ1,$. Hence, by Theorem 3 and Lemma 4, we obtain

Nn,1,1 =
∑

$|n, $ m=n

m! &m ·
δ1,$

n
· 2m
m + 1

δm, odd =
2n!

n + 1
· δn, odd. #

Here are the values of Nn,g,r for small n:

N1,g,r = 1;

N2,g,r = 22g · δr, even;

N3,g,r = 33g−2
(
2ν+1 + 2r + (−1)r · 3

)
;

N4,g,r = 2 · 42g−2(6ν + 3 · 2ν + 2r) · δr, even;

N5,g,r = 52g−2
(
2 · 24ν + 2(−1)r · 6ν + 4ν + 4r + (−1)r · 4

)
;

N6,g,r = 2 · 62g−2(120ν + 24ν + 12ν + 2 · 8ν + 4ν + 2 · 3ν

+ 3ν · 2r + 2r + 2) · δr, even;

N7,g,r = 72g−2
(
2 · 720ν + 2 · (−1)r · 120ν + 2 · 48ν + (−1)r · 36ν

+ 6r + (−1)r · 6
)
;

N8,g,r = 2 · 82g−2(5040ν + 720ν + 240ν + 144ν + 2 · 48ν + 2 · 16ν

+ 4ν · 2r+1 + 4r)δr, even,

where δr, even = 1 if r is even, and is equal to 0 otherwise.
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