Мамонтов Александр Евгеньевич

ГЛОБАЛЬНЫЕ ТЕОРЕМЫ СУЩЕСТВОВАНИЯ ДЛЯ МНОГОМЕРНЫХ УРАВНЕНИЙ СЖИМАЕМЫХ НЕНЬЮТОНОВСКИХ ЖИДКОСТЕЙ В ПРОСТРАНСТВАХ ОРЛИЧА

01.01.02 — дифференциальные уравнения

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора физико-математических наук

Работа выполнена в Институте гидродинамики им. М.А.Лаврентьева Сибирского отделения Российской академии наук.

Официальные оппоненты: д.ф.-м.н., проф. А.А.Амосов

д.ф.-м.н., проф. С.К.Водопьянов д.ф.-м.н., проф. В.В.Шелухин

Ведущая организация: Московский государственный

университет им. М.В.Ломоносова

Защита состоится 16 октября 2008 г. в 15:00 на заседании диссертационного совета Д 003.015.04 при Институте математики им. С.Л.Соболева СО РАН по адресу: 630090, Новосибирск, пр. ак. Коптюга, 4.

С диссертацией можно ознакомиться в библиотеке Института математики им. С.Л.Соболева СО РАН.

Автореферат разослан 20 августа 2008 г.

Ученый секретарь диссертационного совета к.ф.-м.н.

I. Аннотация¹

Основной целью диссертационной работы является доказательство теорем существования «в целом» по времени и входным данным для уравнений многомерного движения вязкой сжимаемой неньютоновской жидкости. В связи с необходимостью оценки плотности изучается поведение решений транспортного уравнения с нерегулярными коэффициентами (особенно неограниченной дивергенцией коэффициента). Оказывается, что этот вопрос, а потому и вся исходная задача, естественным образом решаются с помощью аппарата пространств Орлича. В связи с этим возникает другая вспомогательная задача — об экстраполяции линейных операторов в пространствах Орлича, которая решается в диссертации с помощью интегральных преобразований и представлений N-функций. В качестве еще одного приложения предложенных экстраполяционных методов приведена проблема единственности для уравнений Эйлера.

II. Общая характеристика работы

II.1. Актуальность темы и ее разработанность в литературе.

Исследование уравнений механики сплошных сред является задачей, относящейся как к области механики и физики, так и математики. Ее актуальность обусловлена многочисленными приложениями, особенно ярко проявившимися в последнее столетие. Принятые в современной науке подходы требуют, чтобы формулировка и анализ физических моделей сопровождались их математическим исследованием. Возникающие при этом математические задачи оказываются весьма интересными, своеобразными и требовательными к применяемому математическому аппарату, приводя нередко к разработке специальных оригинальных подходов. Преодоление возникающих трудностей явилось одним из основных стимулов развития математики. Развитый при этом новый инструментарий обогатил как саму математику, так и возможности ее приложений.

Необходимо также упомянуть, что доказательство теорем о математической корректности физических моделей способствует обоснованию и развитию численных методов, значение которых в последнее время чрезвычайно возросло.

Для приложений особенную ценность представляют *теоремы о существовании решений «в целом»*, т. е. для любых интервалов времени и любых, сколь угодно больших, входных данных.

Все сказанное относится и к одной из наиболее известных моделей в механике сплошных сред — модели вязкой сжимаемой жидкости (ВСЖ), описываемой системой дифференциальных уравнений в частных производных

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0, \tag{1}$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) \equiv \frac{\partial (\rho \mathbf{u})}{\partial t} + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) = \operatorname{div} \mathbb{P} + \rho \mathbf{f}$$
 (2)

 $^{^1}$ Работа выполнена при поддержке РФФИ (проект 07–01–00309) и гранта Президента РФ (проект МК–213.2008.1).

— это сокращенная форма модели (без уравнения энергии), возникающая в механике при описании некоторых классов течений и сред, и являющаяся естественным математическим приближением для полной системы. Даже в таком сокращенном виде модель достаточно богата с точки зрения приложений и представляет серьезные математические трудности. Так, уравнение (1) имеет гиперболический тип по ρ , а (2) — параболический по \mathbf{u} , так что вся система не имеет определенного типа; теория таких систем (смешанного типа) развита еще недостаточно полно, и при исследовании (1), (2) необходимо прибегать к специальным подходам.

В системе (1), (2) ρ есть плотность жидкости, \mathbf{u} — вектор скорости, \mathbb{P} — тензор напряжений; это неизвестные функции пространственных переменных $\mathbf{x} \in \mathbb{R}^n$ и времени t; вектор внешних массовых сил \mathbf{f} считается заданной функцией от t, \mathbf{x} . Операторы ∇ и div действуют по \mathbf{x} . Система (1), (2) незамкнута — не хватает определяющего уравнения (ОУ) для напряжений: $\mathbb{P} = \mathbb{P}(\rho, \mathbf{u})$. Его выбор означает выбор определенной среды или, точнее, среды с классом течений. Физический смысл понятия «жидкость», как правило, отождествляемого с постулатами Стокса, приводит к тому, что ОУ обязано иметь вид

$$\mathbb{P} = \sum_{k=0}^{n-1} \alpha_k(\rho, \{J_s(\mathbb{D})\}_{s=1}^n) \mathbb{D}^k, \tag{3}$$

где $\mathbb{D} = \operatorname{Sym}(\nabla \otimes \mathbf{u}) = ((\nabla \otimes \mathbf{u}) + (\nabla \otimes \mathbf{u})^*)/2$ — тензор скоростей деформаций, а $\{J_s(\mathbb{D})\}$ — его основные инварианты. ОУ реальных сред достаточно сложны, и уже их описание представляет значительную трудность. Чаще всего при исследовании системы (1), (2) выбирают ОУ (3) с линейной зависимостью \mathbb{P} от \mathbb{D} (закон Стокса):

$$\mathbb{P} = (-p + \lambda \operatorname{div} \mathbf{u})\mathbb{I} + 2\mu \mathbb{D}, \tag{4}$$

в котором давление p и коэффициенты вязкости λ , μ могут быть функциями² от ρ . В случае (4) уравнения (1), (2) описывают **ньютоновскую** жидкость; тогда $\mathrm{div}\mathbb{P} = -\nabla p(\rho) + \mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \mathrm{div}\mathbf{u}$, и (1), (2) превращаются в уравнения Навье—Стокса ВСЖ. Все прочие модели называются **неньютоновскими**, в их число входят и более общие ситуации, чем (3). Мы ограничимся ОУ (3), что соответствует неньютоновским жидкостям дифференциального типа первого порядка. Даже для таких сред и даже в несжимаемом случае теория разрешимости развита недостаточно полно.

Нас интересует проблема разрешимости «в целом» начально-краевых задач для (1), (2). История этого вопроса показывает условность разделения на ньютоновский и неньютоновский случаи. Впрочем, по второму случаю результатов значительно меньше, и особенно в сэксимаемом случае подавляющее большинство работ посвящено ньютоновско-

 $^{^2}$ но обычно λ и особенно μ считаются постоянными.

MY OY(4). В развитии теории разрешимости уравнений (1), (2), (4) можно условно выделить несколько этапов.

Первый этап — локальная теория — был начат в 1950-е гг. в работах D.Graffi и J.Serrin'а и пережил свой расцвет в 1960-70-е гг. благодаря работам таких авторов как J.Nash, А.И.Вольперт, С.И.Худяев, N.Itaya, В.А.Солонников, А.Тапі. Определенным итогом этого этапа можно считать работу A.Matsumura и T.Nishida (1980), в которой была впервые показана глобальная во времени (хотя пока локальная по начальным данным) разрешимость в многомерном случае. Впрочем, локальные (по времени или данным) результаты появлялись и после этого 3 .

Начало второго этапа — глобальной одномерной теории — можно связать с работой Я.И.Канеля (1968); расцвет этой теории пришелся на 1970-80-е гг., когда благодаря работам авторов: N.Itaya, A.Tani, A.B.Кажихов, В.В.Шелухин, В.Б.Николаев, С.Я.Белов, В.А.Вайгант, А.А.Папин, А.А.Амосов, А.А.Злотник, Т.Nagasawa, S.Kawashima, T.Nishida, S.Yanagi, M.Okada, B.Kawohl, D.Hoff и др., была построена целостная теория глобальной разрешимости основных начально-краевых задач и задачи Коши в случае n=1. В 1980-90-е гг. акцент был в значительной степени смещен на исследование решений с разрывными данными.

В случае n > 1 для системы (1), (2) долгое время не было каких-либо глобальных результатов. В связи с этим интерес представляют работы, касающиеся специальных классов многомерных течений⁵, и по приближенным моделям для (1), (2), (4) в многомерном случае⁶.

На рубеже 1980-90-х гг. произошел прорыв в многомерной глобальной теории для системы (1), (2), (4), который был подготовлен многими работами, содержавшими ряд плодотворных идей. Так, была исследована⁷ ключевая роль так называемого эффективного вязкого потока (эффективного вязкого давления) $S = (\lambda + 2\mu) \operatorname{div} \mathbf{u} - p(\rho)$. В работах W.E и D.Serre было (в одномерном случае) открыто ключевое коммуникативное соотношение для слабых пределов⁸ $\overline{S}\rho^{\alpha} = \overline{S} \cdot \overline{\rho^{\alpha}}$, доказанное и использованное затем в многомерном случае P.L.Lions'ом. Для транспортного уравнения (включая (1)) R.J.DiPerna и P.L.Lions усовершенствовали аппарат ренормализации, играющий ныне ключевую роль в математической теории ВСЖ.

Первая попытка решения двумерной задачи была предпринята М.Ра-

³A.Valli, P.Secchi, A.Matsumura, T.Nishida, N.Yamagata, D.Hoff, K.Zumbrun, G.Lukaszewich, A.Tani.

⁴В.А.Вайгант, А.А.Амосов, А.А.Злотник, В.В.Шелухин, D.Serre, D.Hoff, M.Padula, A.Novotny, Song Jiang, R.Zarnowski.

⁵В.Б.Николаев, D.Hoff, H.Fujita Yashima, R.Benabidallah, В.В.Шелухин

⁽¹⁹⁸⁰⁻⁹⁰⁻е гг.).

⁶А.В.Кажихов, В.А.Вайгант, Lu Min, S.Ukai и автор (1990-е гг.).

⁷D.Hoff, A.Novotny, P.L.Lions, B.A.Вайгант, A.B.Кажихов, D.Serre, N.Masmoudi, E.Feireisl, H.Petzeltova.

⁸для достаточно малых $\alpha > 0$; черта означает слабый предел.

⁹в ограниченной области, $p = \rho$.

dula (1986). Несмотря на наличие пробелов, эта работа содержит плодотворные идеи — в частности, об эффективности оценок в классах Орлича.

Наконец, появились работы P.L.Lions'а (1993, 1998) о глобальной разрешимости уравнений (1), (2), (4) при $p = \rho^{\gamma}$ с достаточно большими γ (показатель адиабаты) и произвольным n (для начально-краевой задачи). Дальнейшее развитие этого результата, включая снижение γ , предпринято в работах E.Feireisl, S.Matusu-Necasova, H.Petzeltová, I.Straskraba. Имеются результаты и по стационарным задачам — как локальные 10 , так и глобальные 11 .

Все упомянутые результаты касаются слабых обобщенных решений; в связи с этим особую роль играют работы В.А.Вайганта и А.В.Кажихова (1995–1996), в которых построены более гладкие (в том числе классические) решения ньютоновской системы (1), (2), (4), но при $n=2, \lambda=\lambda(\rho)$. Для классических уравнений Навье—Стокса ВСЖ, даже при n=2, проблема глобального существования гладких решений, и вообще, проблема единственности глобальных решений, остаются открытыми. Открыты и многие другие важные проблемы: дальнейшего снижения показателя γ для глобального существования хотя бы слабых решений; распространения результатов на случай теплопроводной жидкости, и т. д.

Среди упомянутых работ не уделено внимания неньютоновскому случаю 12 . Это связано со спецификой найденных методов и их жесткой «привязке» к ньютоновскому характеру ОУ. Нужно подчеркнуть, что неньютоновские ОУ лучше описывают поведение реальных сред; к тому же их роль оказалась важной в проблеме турбулентности 13. С математической точки зрения теория разрешимости (особенно в классах достаточно регулярных решений) для неньютоновских уравнений сложнее, т. к. тогда в правой части (2) вместо линейного оператора Ламе возникает квазилинейный эллиптический оператор от **u**. С другой стороны, это придает проблеме дополнительный математический интерес и стимулирует ее изучение. Для многомерных уравнений сжимаемой неньютоновской жидкости результаты весьма немногочисленны. В нескольких работах¹⁴ были построены так называемые мерозначные решения¹⁵. Эти результаты приведены в небольшом разделе монографии чешских авторов J.Malek, J.Necas, M.Rokyta, M.Ruzicka (1996), которая в остальном посвящена несжимаемым неньютоновским жидкостям; *проблема существования хотя бы* слабых обобщенных решений для случая сжимаемых неньютоновских жидкостей была обозначена в этой монографии как нере-

¹⁰M.Padula, J.Heywood, H.Beirao da Veiga, A.Novotny, A.Matsumura, T.Nishida, A.Valli, R.Farwig, C.A.Назаров, K.Pileckas, P.Penel.

¹¹P.L.Lions, E.Feireisl, A.Novo, A.Novotny, I.Straskraba, П.И.Плотников, J.Sokolowski.

¹²если не считать нескольких работ по одномерным движениям.

¹³R.S.Rivlin (1957), Y.N.Huang, K.R.Rajagopal (1996), A.Yoshizawa, S.Nisizima (1993).

¹⁴S.Matusu-Necasova, A.Novotny, J.Necas, M.Shilhavy, J.Neustupa (1990–1994). ¹⁵т. е. такие, которые получаются без обоснования слабого предельного перехода в

нелинейных вязких членах.

шенная. В определенной степени ее *решение достигнуто в работах* автора, лежащих в основе настоящей диссертационной работы.

С другой стороны, в несжимаемом случае¹⁶ теория разрешимости уравнений неньютоновской жидкости развита несравненно лучше. Начало этому положено в работах О.А.Ладыженской (1967–1968), где были показаны существование и единственность решений для широкого класса неньютоновских несжимаемых жидкостей, по существу степенных — с достаточно быстрым ростом коэффициента вязкости¹⁷. Отметим также работу S.Kaniel (1970), где аналогичные результаты были получены для более общих диссипативных потенциалов V, т. е. потенциалов в представлении

$$\mathbb{P} = -p\,\mathbb{I} + \frac{\partial V(\mathbb{D})}{\partial \mathbb{D}}.\tag{5}$$

В настоящее время представление (5) (имеющее физические основания) стандартная техника в теории несжимаемых неньютоновских жидкостей; впрочем, обычно ограничиваются частным случаем $V(\mathbb{D}) = \Gamma(|\mathbb{D}|)$ это так называемые обобщенные ньютоновские жидкости. К настоящему моменту в теории несжимаемых неньютоновских жидкостей имеется ряд результатов¹⁹ о снижении скорости роста потенциала и обобщении вида V, а также о повышении гладкости решений.

Особое положение в этой теории занимают модели вязкопластических жидкостей Шведова—Бингама²⁰, которые находят свое применение при изучении движений таких сред, как пасты, цементы, суспензии, некоторые виды нефтей, буровые растворы. В несжимаемом случае здесь также построена развитая теория. В работах Г.Генки (1937), А.А.Ильюшин (1940) решен ряд плоских задач, причем в последней работе впервые предложена вариационная формулировка, позднее занявшая преобладающее место в теории²¹. П.П.Мосоловым и В.П.Мясниковым (1965–1981) предпринято одно из первых систематических исследований модели Бингама, но в рамках некоторых упрощений (стационарность или линеаризация). В книге

¹⁶т. е. когда в (1), (2), (3) полагают $\rho \equiv \text{const.}$

¹⁷ Что характерно, эти работы были своего рода попыткой решения проблемы единственности для классических трехмерных уравнений Навье—Стокса несжимаемой жидкости, нерешенной до сих пор и попавшей теперь в число «проблем тысячелетия». Это еще раз показывает тесную связь между ньютоновской и неньютоновской моделями.

 $^{^{18}}$ Здесь и далее для тензоров $|\mathbb{A}|^2 = \mathbb{A} : \mathbb{A}, \mathbb{A} : \mathbb{B} = \sum A_{ij}B_{ij}$. 19 О.А.Ладыженская, Г.А.Серегин, J.Malek, J.Necas, M.Rokyta, M.Ruzicka, H.Bellout,

²⁰Их характерным свойством является отсутствие жидкого течения в случае, если напряжения в рассматриваемом объеме не превышают заданного порога текучести, в противном случае течение происходит по закону вязких жидкостей. Таким образом, в этих средах возможно образование твердотельных зон (ядер), которые со временем могут исчезать, появляться и менять форму. Эти среды не являются жидкостями в смысле постулатов Стокса, но их традиционно все же именуют жидкостями.

²¹Следует, однако, отметить, что эквивалентность исходной (дифференциальной) и вариационной формулировок не является математически очевидным фактом (П.П.Мосолов, 1978) и не всегда имеет место.

Г.Дюво и Ж.Л.Лионса (1972) доказаны теоремы существования и единственности для вариационной формулировки без упрощений (хотя вопрос о связи вариационной постановки с исходной решен формально).

В настоящее время для вариационного подхода в теории несжимаемой жидкости Бингама имеется масса результатов 22 , в которых показывается дальнейшая регулярность решений и рассматриваются более общие ОУ. В связи с тем, что в вариационном подходе затруднительно непосредственное изучение поведения ядер, в ряде недавних работ 23 был предложен возврат к исходной дифференциальной постановке 24 в модели Бингама, что позволило подробнее изучить многомерные движения несжимаемой среды Бингама и начать (при n=1) изучение сжимаемого случая. Имеются также работы 25 по неоднородной несжимаемой жидкости Бингама. Но глобальная теория многомерных движений сжимаемой среды Бингама не развивалась.

Как видно из приведенного обзора, при серьезных успехах в глобальной многомерной теории сжимаемой ньютоновской и несжимаемой неньютоновской жидкостей, теория еще далека от своего завершения. Методы, развитые для уравнений ВСЖ, жестко «привязаны» к ньютоновским ОУ, и напротив, подходы, разработанные для неньютоновских жидкостей, существенно используют несжимаемость²⁶. В случае одновременного учета сэкимаемости, многомерности движения и неньютоновского характера ОУ (3) оставалась открытая проблема: нужны теоремы существования «в целом» по времени и входным данным слабых и сильных решений.

Таким образом, основным *объектом* исследования являются уравнения многомерного движения ВСЖ, в особенности с неньютоновскими ОУ.

- **II.2. Цель диссертационной работы** доказательство теорем существования «в целом» по времени и входным данным для моделей многомерного движения вязких сжимаемых неньютоновских жидкостей (что удается достичь с привлечением теории пространств Орлича), а также исследование поведения в пространствах Орлича дифференциальных операторов, входящих в систему дифференциальных уравнений ВСЖ.
- **II.3.** Методы исследования, достоверность и обоснованность результатов. Работа носит теоретический характер. Все результаты в ней формулируются в виде математических теорем и сопровождаются строгими доказательствами.

 $^{^{22}}$ Y.Kato (1993), J.U.Kim (1987), О.А.Ладыженская, Г.А.Серегин, М.Fuchs (1987—2000).

²³ В.В.Шелухин, И.В.Басов, J.Malek, M.Ruzicka.

 $^{^{24}}$ когда решение есть тройка функций: ρ , ${\bf u}$ и $\mathbb P$, т. к. в твердотельных зонах $\mathbb P$ «не зависит» от ρ , ${\bf u}$.

²⁵M.Böhm (1985), E.Fernandez-Cara, F.Guillen, R.R.Ortega (1997), И.В.Басов, В.В.Шелухин (2007).

 $^{^{26}}$ когда нет принципиальной проблемы оценки плотности, в то время как именно для нерегулярных решений учет сжимаемости особенно важен.

В работе широко используются теоремы вложения, методы теории функций и функционального анализа (включая выпуклый анализ, теорию симметричных пространств и интегральные преобразования), теории нелинейных дифференциальных уравнений и уравнений математической физики (прежде всего, обобщенных решений).

Для доказательства существования решений начально-краевых задач для дифференциальных уравнений в частных производных используется построение приближенных решений (с помощью регуляризации коэффициентов и входных данных, полудискретизации по времени, метода Галеркина с привлечением принципов о неподвижных точках нелинейных операторов) с одновременной оценкой этих приближенных решений; далее осуществляется предельный переход с использованием методов компактности, монотонности и обоснованием слабого предельного перехода в нелинейных членах. При этом оценки приближенных решений для наглядности дополнительно оформляются в виде априорных оценок гладких решений исходной задачи.

Для формулировки оценок решений широко используется аппарат пространств Орлича. Следует отметить, что несмотря на полувековую историю теории этих пространств и их применений в теоремах вложения и оценках решений дифференциальных уравнений²⁷, эта теория еще далека от своего завершения. В связи с этим диссертация в значительной степени посвящена развитию методов пространств Орлича. Так, разрабатываются и применяются экстраполяционные методы оценки поведения функций и операторов в пространствах Орлича, для чего используется техника интегральных преобразований и изучаются интегральные представления N-функций.

При исследовании единственности решений доказываются и применяются утверждения типа леммы Гронуолла (Осгуда) с неограниченным коэффициентом в многомерном случае.

II.4. Основные результаты диссертации, выносимые на защиту, и их научная новизна. На защиту выносятся следующие результаты автора:

- 1. Впервые²⁸ доказаны теоремы существования слабых решений «в целом» по времени и входным данным для уравнений многомерного движения вязкой сжимаемой неньютоновской жидкости (Главы 4–6). Это сделано для следующих трех подмоделей (т. е. трех видов ОУ):
 - а) модель Бюргерса (Глава 4: Теорема 4.3.6);
 - b) модель с давлением (Глава 5: Теорема 5.2.5);

 $[\]overline{\ }^{27}$ В связи с упомянутой спецификой назовем таких авторов, как М.А.Красносельский, Я.Б.Рутицкий, В.И.Юдович, Ю.А.Дубинский, С.И.Похожаев, И.В.Скрыпник, М.И.Вишик, N.Trudinger, T.K.Donaldson, J.G.Hempel, J.G.Morris, R.Adams, R.O'Neil, A.Kufner, S.Fucik, O.John, G.Talenti, A.Cianchi; все авторы, занимающиеся теорией экстраполяции — см. п. II.4.5. 28 ср. обзор в п. II.1.

- с) модель Бингама (Глава 6: Теорема 6.3.2).
- 2. Показано, что все слабые решения того же класса удовлетворяют законам сохранения массы и энергии (Главы 4–6: Теоремы 4.3.5, 4.3.7, 5.2.5, 6.3.2; Лемма 5.2.3; Предложение 5.2.6; п. 4.4.1). Эти соотношения являются нетривиальными для слабых решений (хотя естественны и нужны с позиций механики) и требуют доказательства. Ранее аналогичный факт доказывался (для ВСЖ) только для ньютоновских моделей²⁹.
- 3. Впервые получены точные условия на неограниченную $\operatorname{div} \mathbf{u}$, гарантирующие однозначную глобальную разрешимость задачи Коши для уравнения неразрывности (1) и сопряженного уравнения переноса, и сформулированы точные классы для решений (Глава 2). Ранее эта проблема рассматривалась либо 30 в случае div**u**, ограниченной по **x**, либо 31 в виде достаточных условий. В работе найдено точное неулучшаемое условие и построены соответствующие контрпримеры. Те же условия являются критерием для утверждения типа леммы Гронуолла (Осгуда) в многомерном случае. Результат для уравнения переноса распространен на случай слабой нелинейности.
- 4. Разработана техника дальнейших априорных оценок для уравнений сжимаемой неньютоновской жидкости, позволяющая повышать гладкость построенных решений (Глава 7). Ранее «продвинутая» 32 система априорных оценок для неодномерных уравнений вязкой жидкости предлагалась только для двумерных уравнений ньютоновской $\mathrm{BC}\mathrm{X}^{33},$ или же для несжимаемой жидкости 34 (также в основном для n=2).
- 5. Разработаны:
 - а) метод экстраполяции операторов из L_p в пространства Орлича,
 - b) представления пространств Орлича как экстраполяционных на основе интегральных преобразований и представлений N-функций, позволяющие конструктивно формулировать поведение функций и операторов в пространствах Орлича (Глава 3). Ранее аналогичные результаты касались либо внутренних свойств шкалы³⁵, либо³⁶ частных случаев, или давались в терминах, затрудняющих конструктивную формулировку экстраполяционных свойств во всей промежуточной шкале.
- 6. В качестве еще одной иллюстрации экстраполяционных методов (Главы 3) получено простое условие на неограниченный вихрь (в простран-

²⁹P.L.Lions, E.Feireisl, A.Novotny, П.И.Плотников, J.Sokolowski.

³⁰R.J.DiPerna, P.L.Lions, F.Bouchut, F.Colombini, N.Lerner, L.Ambrosio, C.DeLellis, M.Lecumberry, S.Maniglia, G.Crippa, N.DePauw.

³¹В.И.Юдович, А.В.Кажихов, В.В.Шелухин, В.Desjardins.

³²т. е. гарантирующая более чем слабое решение

³³В.А.Вайгант, А.В.Кажихов.

³⁴О.А.Ладыженская, Г.А.Серегин, J.Malek, J.Necas, M.Rokyta, M.Ruzicka, P.Kaplicky, J.Stara.

³⁵И.Б.Симоненко.

³⁶S.Yano, R.Kerman, B.Jawerth, M.Milman, С.В.Асташкин, Е.И.Бережной, А.А.Перфильев, G.Karadzhov, С.Ф.Лукомский, М.Krbec, С.Саропе, A.Fiorenza, и др.

ствах Орлича), при котором имеет место единственность решения для уравнений Эйлера (Приложение A). Ранее аналогичный результат был получен³⁷ в виде труднопроверяемого семейства оценок в L_p , в то время как в диссертации получено одно условие в классе Орлича.

II.5. Теоретическая и практическая значимость результатов. Выводы работы.

- 1. Доказаны теоремы о глобальной разрешимости для важного класса моделей механики сплошных сред уравнений сжимаемых неньютоновских жидкостей, что открывает новые перспективы в исследовании свойств этих моделей и их применении для описания движений реальных сред.
- 2. Методы и априорные оценки, применяемые при доказательстве теорем существования, могут быть использованы для разработки численных методов решения рассматриваемых задач.
- 3. Диссертация является опытом успешного систематического применения теории функций, теорем вложения и пространств Орлича в математическом моделировании и задачах для нелинейных дифференциальных уравнений в частных производных; разработанные методы могут быть эффективны в других задачах теории дифференциальных уравнений, математической физики и механики сплошных сред.
- 4. Разработанные в диссертации экстраполяционные методы могут применяться при изучении свойств операторов (в частности, дифференциальных) в шкале симметричных пространств.
- 5. Результаты и методы работы активно используются при выполнении научно-исследовательских работ (см. п. II.6).
- **II.6. Апробация работы.** Результаты по теме диссертации получены в ходе выполнения следующих научно-исследовательских проектов:
- 1. Институт гидродинамики им. М.А. Лаврентьева СО РАН: бюджетные темы 0120.0 406875, 0120.0 706888.
- 2. Российский Фонд Фундаментальных Исследований: проекты 96-01-01524, 99-01-00622, 02-01-00645, 05-01-00131, 07-01-00550.
- 3. Грант Президента РФ по поддержке ведущих научных школ $H \coprod -7525.2006.1$.
- 4. ОЭММПУ РАН: проекты 3.13.1, 4.13.2.
- 5. Государственный комитет РФ по Высшему образованию: проекты $3H-201-96,\ 3H-335-99.$
- 6. Федеральное Агентство по Образованию, проект 8247 (ЗН-301-05).
- 7. Президиум РАН: молодежный проект № 102 (6-й конкурс-экспертиза).
- 8. Президиум CO PAH: проект № 17 по итогам Лаврентьевского конкурса молодежных проектов.

³⁷В.И.Юдович (1995).

Результаты работы докладывались на научных семинарах (2007–2008 гг.):

- 1. «Математические проблемы механики сплошных сред», ИГиЛ СО РАН, Новосибирск (рук. чл.-корр. РАН П.И.Плотников).
- 2. «Математика в приложениях», ИМ СО РАН, Новосибирск (рук. акад. РАН С.К.Годунов).
- 3. Семинар МЭИ(ТУ) по дифференциальным уравнениям и математическому моделированию, Москва (рук. проф. Ю.А.Дубинский).
- 4. Общегородской семинар по математической физике им. В.И.Смирнова, ПОМИ, Санкт-Петербург (рук. проф. Н.Н.Уральцева, проф. В.М.Бабич, проф. В.А.Солонников и проф. Г.А.Серегин).
- 5. Семинар отдела теории функций МИАН, Москва (рук. акад. РАН С.М.Никольский, чл.-корр. РАН Л.Д.Кудрявцев, чл.-корр. РАН О.В.Бесов и чл.-корр. РАН С.И.Похожаев).
- 6. «Избранные вопросы математического анализа», ИМ СО РАН, Новосибирск (рук. проф. Г.В.Демиденко).
- 7. Семинар по геометрическому анализу, ИМ СО РАН, Новосибирск (рук. проф. С.К.Водопьянов).
- 8. Семинар кафедры общей математики ФВМиК МГУ, Москва (рук. акад. РАН В.А.Ильин и акад. РАН Е.И.Моисеев).
- 9. Семинар кафедры дифференциальных уравнений МГУ, Москва (рук. проф. В.А.Кондратьев и проф. Е.В.Радкевич).
- 10. «Вычислительная математика, математическая физика, управление», ИВМ РАН, Москва (рук. проф. Г.М.Кобельков, проф. В.И.Лебедев и проф. А.В.Фурсиков).
- 11. «Прикладная гидродинамика», ИГиЛ СО РАН, Новосибирск (рук. чл.-корр. РАН В.В.Пухначев).
- 12. Семинар лаборатории волновых процессов ИМ СО РАН, Новосибирск (рук. чл.-корр. РАН В.Г.Романов).
- 13. «Дифференциальные уравнения и смежные вопросы анализа», ИМ СО РАН, Новосибирск (рук. проф. В.С.Белоносов и д.ф.-м.н. М.В.Фокин).

Результаты диссертации докладывались на следующих конференциях:

- 1. Международная конференция «Дифф. уравнения и смежные вопросы теории функций» (совм. заседания сем. им. И.Г.Петровского и Моск. мат. об-ва, 19-я сессия). Москва, МГУ, 20–24 января 1998 г.
- 2. Seventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications. Zürich, Switzerland, 9–13 февраля 1998 г.
- 3. Третий Сибирский Конгресс по прикладной и индустриальной математике (ИНПРИМ-98), посв. памяти С.Л.Соболева. Новосибирск, ИМ СО РАН, 22–27 июня 1998 г.
- 4. Seventh International Conference on Navier—Stokes Equations and Related Nonlinear Problems. Italy, Ferrara, 13–17 сентября 1999 г.
- 5. Третья Сибирская школа-семинар «Математические проблемы механи-

- ки сплошных сред», Новосибирск, ИГиЛ СО РАН, 9–12 ноября 1999 г.
- 6. Межд. конф. «Функциональные пространства, теория приближений, нелинейный анализ», посв. 100-летию акад. С.М.Никольского. Москва, МИАН, 23–29 мая 2005 г.
- 7. Межд. конф. «Лаврентьевские чтения по математике, механике и физике», посв. 105-летию со дня рожд. акад. М.А.Лаврентьева. Новосибирск, 27–31 мая 2005 г.
- 8. Воронежская зимняя математическая школа «Современные методы теории функций и смежные проблемы». Воронеж, ВГУ, 27 января 2 февраля 2007 г.
- 9. Межд. конф. «Дифф. уравнения и смежные вопросы», посв. памяти И.Г.Петровского (XXII совм. заседание Моск. мат. об-ва и сем. им. И.Г.Петровского). Москва, МГУ, 21–26 мая 2007 г.
- 10. Межд. конф. «Дифф. уравнения, теория функций и приложения», посв. 100-летию со дня рожд. акад. И.Н.Векуа. Новосибирск, 28 мая—2 июня 2007 г.
- 11. Пятая межд. конф. по мат. моделированию, посв. 75-летию со дня рожд. акад. В.Н.Монахова. Якутск, 24–28 июля 2007 г.
- 12. Всероссийская конф. «Проблемы механики спл. сред и физики взрыва», посв. 50-летию ИГиЛ СО РАН. Новосибирск, 17–22 сентября 2007 г.
- **II.7. Публикации.** Личный вклад автора. Основные результаты диссертации (см. п. II.4) получены автором и опубликованы в [1–16] (см. п. IV). Из них 12 работ в журналах из списка изданий, рекомендованных ВАК для опубликования основных результатов докторских диссертаций. Из содержимого совместных публикаций [2,7,13] (соответствующих материалу Главы 2 диссертации) и [12] (соответствующей материалу Приложения А) в диссертацию вошли только результаты, принадлежащие автору, и материал, необходимый для замкнутости формулировок.
- **II.8. Структура и объем диссертации.** Диссертация состоит из Введения, 7 глав, Приложений А и В, Заключения и списка литературы, включающего 433 наименования. Работа изложена на 334 страницах и содержит 2 таблицы.

III. Краткое изложение содержания диссертации

Введение содержит: обоснование актуальности темы диссертации, предварительную формулировку изучаемых проблем и обзор их современного состояния, обоснование целесообразности применяемых подходов и краткий обзор содержания диссертации.

Глава 1 носит подготовительный характер — в ней содержатся вспомогательные сведения из теории функций, функционального анализа и дифференциальных уравнений. Большинство из них являются известными фактами и приводятся для удобства. Через L_M , E_M и K_M обозначаются соответственно пространство Орлича, его сепарабельная часть и

класс Орлича, порожденные N-функцией M. Символы W^kL_M и W^kE_M обозначают пространства Соболева—Орлича, построенные на L_M и E_M соответственно. Выражение \overline{M} означает N-функцию, двойственную (дополнительную) к M, а \prec и \prec суть стандартные порядки на N-функциях.

Из материала Главы 1 автору принадлежит, в частности, описание негативных пространств Соболева—Орлича, приведенное в п. 1.2. Здесь нерефлексивность пространств Орлича и другие особенности приводят к новым по сравнению с пространствами Соболева тонким моментам; стандартные определения негативных пространств становятся здесь неэквивалентными и приводят к различным пространствам.

В Γ лаве 2 основной задачей является исследование классов корректности для линейного уравнения переноса

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = h,\tag{6}$$

т. е. классов для h и особенно для ${\bf u}$, для которых можно гарантировать корректность задачи

$$\rho|_{t=0} = \rho_0 \tag{7}$$

для (6), и классов, в которых при этом строится само решение ρ . Это необходимо для дальнейшей оценки плотности из (1) в системе ВСЖ. Для простоты в Главе 2 рассматривается периодическая задача Коши, т. е. задача (6), (7), в которой предполагается периодичность всех величин по x_k с периодами T_k , так что в качестве области определения решений можно рассматривать цилиндр $Q_T = \Omega \times (0,T)$, где $\Omega = \prod_{k=1}^n (0,T_k)$, а качестве краевых условий выступает условие периодичности. Большинство результатов Главы 2, и в частности те, которые используются далее, сохраняют силу и при других краевых условиях.

Задачу (6), (7) удобно анализировать параллельно с сопряженной:

$$\frac{\partial \zeta}{\partial t} + \mathbf{u} \cdot \nabla \zeta = g, \qquad \zeta|_{t=T} = \zeta_T. \tag{8}$$

Как упоминалось в п. II.4.3, в случае неограниченной 38 div ${\bf u}$ для задач (6), (7) и (8) в работах других авторов не было разработано теории о корректности. В Главе 2 это удается сделать с помощью формулировки требований на div ${\bf u}$ и на решения ρ , ζ в терминах классов Орлича. При этом ключевую роль играет класс выпуклых функций 39

$$\mathcal{K} = \left\{ M \mid \int_{-\infty}^{+\infty} \frac{\ln M(s)}{s^2} ds = +\infty \right\}, \tag{9}$$

 $^{^{38}}$ А именно такая ситуация возникает при рассмотрении слабых решений системы (1), (2).

³⁹Здесь отсутствие нижнего предела в интеграле означает, что его выбор не играет роли (это может быть любое положительное число).

состоящий из быстро (экспоненциально) растущих функций, порождающих пространства Орлича, лежащие между L_{∞} и всеми L_{p} $(p < \infty)$.

В п. 2.1 изучаются внутренние свойства класса (9) и вопрос о минимальных требованиях на \mathbf{u} , обеспечивающих корректное построение характеристик для (6), (8)₁:

$$\frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}(t), t), \quad \mathbf{x}(0) = \mathbf{x}_0. \tag{10}$$

Оказывается, что требование $\nabla \otimes \mathbf{u} \in L_M$, $M \in \mathcal{K}$ в точности соответствует (ввиду теорем вложения) модулю непрерывности \mathbf{u} по \mathbf{x} , достаточному (и вообще говоря необходимому, по теореме Осгуда) для единственности в (10). Если же $M \notin \mathcal{K}$, то строится Пример 2.1.4 поля $\mathbf{u} = \mathbf{u}(\mathbf{x})$ (при n=2) такого, что $\mathrm{div}\mathbf{u} = 0$, диагональная часть тензора $\nabla \otimes \mathbf{u}$ лежит в $L_M(\Omega)$, но весь тензор $\nabla \otimes \mathbf{u} \notin L_1(\Omega)$, и в результате две разные характеристические поверхности выходят из одной прямой на плоскости $\{t=T\}$, порождая нетривиальное решение однородной задачи (8). Результаты п. 2.1 не используются далее, но они интересны как иллюстрация роли класса \mathcal{K} и требования

$$\mathbf{u} \in L_1(0, T, W_1^1(\Omega)), \tag{11}$$

которое играет существенную роль ниже 40 .

В п. 2.2 исследуются минимальные требования на коэффициент f в неравенстве типа Гронуолла (Осгуда)

$$\int_{\Omega} \psi d\mathbf{x} \leqslant \int_{0}^{t} \int_{\Omega} f \psi d\mathbf{x} ds + \lambda(t), \tag{12}$$

гарантирующие возможность оценки для ψ . Эта проблема играет фундаментальную роль при доказательстве теорем единственности для дифференциальных уравнений в частных производных, в частности (6) и (8)₁.

Одним из основных в п. 2.2 является

Утверждение 2.2.2. Если $\lambda = 0$, $\psi \in L_{1+\varepsilon}(Q_T)$, $\varepsilon > 0$, $f \in K_M(Q_T)$ с некоторой $M \in \mathcal{K}$, то из (12) (при $\psi \geqslant 0$, $f \geqslant 0$) вытекает $\psi \equiv 0$.

В Утверждениях 2.2.3 и 2.2.4 этот факт обобщается на случаи $\lambda \neq 0$ (тогда удается дать оценку на ψ , превращающуюся при $\sup |\lambda| \to 0$ в $\psi \equiv 0$) и функций ψ , знакопеременных по t; при этом если ψ еще и знакопеременна по \mathbf{x} , то все результаты теряют силу, как показано соответствующим примером. Отметим, что другими авторами⁴¹ результат типа Утверждения 2.2.2 был получен только в виде более сильного достаточного условия на f; либо же (В.И.Юдович, 1995) было найдено неулучшаемое условие, но в труднопроверяемом виде системы оценок в L_p .

⁴⁰Как и во всех работах, упомянутых в п. II.4.3.

⁴¹В.И.Юдович, А.В.Кажихов, В.В.Шелухин, B.Desjardins.

В п. 2.3 для задач (6), (7) и (8) формулируются классы корректности. Ключевую роль здесь играет соотношение (подробно изученное в п. 2.6)

$$\overline{M}(\rho\Phi'(\rho) - \Phi(\rho)) = \Phi(\rho) \tag{13}$$

между N-функцией M (порождающей класс Орлича для $\operatorname{div} \mathbf{u}$) и N-функцией Φ (порождающей класс для ρ), а также функцией $\Psi = \overline{\Phi}$ (для ζ). В Утверждении 2.3.1 выводятся априорные оценки гладких решений

$$\|\rho\|_{L_{\infty}(0,T,L_{\Phi}(\Omega))} \le e^T \left(1 + \int_{Q_T} M(\operatorname{div}\mathbf{u}) d\mathbf{x} ds\right) (\|\rho_0\|_{L_{\Phi}(\Omega)} + \|h\|_{L_1(0,T,L_{\Phi}(\Omega))}),$$
 (14)

$$\|\zeta\|_{L_{\infty}(0,T,L_{\Psi}(\Omega))} \le e^{T} \left(1 + \int_{Q_{T}} M(\operatorname{div}\mathbf{u}) d\mathbf{x} ds\right) (\|\zeta_{T}\|_{L_{\Psi}(\Omega)} + \|g\|_{L_{1}(0,T,L_{\Psi}(\Omega))}),$$
 (15)

которые имеют место при условии $M \in \mathcal{K}$. В Утверждениях 2.3.4 и 2.3.5 показывается существование слабых решений задач (6), (7) и (8) в классах, диктуемых оценками (14), (15), или в более близких к L_1 и L_{∞} классах (т. е. для $\Phi_1 \prec\!\!\!\prec \Phi$, $\Psi_1 \not\succ\!\!\!\!\!\!> \Psi$ вместо Φ и Ψ), при этом требуется

$$\operatorname{div}\mathbf{u} \in K_M(Q_T), \qquad M \in \mathcal{K}. \tag{16}$$

В Утверждении 2.3.6 показан аналогичный факт, но для крайнего случая, т. е. в рамках (16) решения задач строятся в классах, диктуемых оценками

$$\|\rho\|_{L_{\infty}(0,T,L_{1}(\Omega))} \leq \|\rho_{0}\|_{L_{1}(\Omega)} + \|h\|_{L_{1}(Q_{T})},\tag{17}$$

$$\|\zeta\|_{L_{\infty}(Q_T)} \le \|\zeta_T\|_{L_{\infty}(\Omega)} + \|g\|_{L_1(0,T,L_{\infty}(\Omega))}. \tag{18}$$

В п. 2.4 для доказательства единственности решений задач (6), (7) и (8) дополнительно к (16) требуется (11). Сначала в Утверждении 2.4.1 доказывается единственность слабого решения (которое теперь назовем обобщенным решением) задачи (8) класса (18) на основе Утверждения 2.2.2. Затем дается

Определение 2.4.2. Пусть выполнено (11), (16), а входные данные задачи (6), (7) — класса (17). Обобщенным решением задачи называется функция ρ класса (17), удовлетворяющая соотношению двойственности

$$\int_{0}^{t} \int_{\Omega} (\rho g + \zeta h) d\mathbf{x} ds = \int_{\Omega} \rho(t) \zeta_{T} d\mathbf{x} - \int_{\Omega} \rho_{0} \zeta(0) d\mathbf{x}$$
 (19)

для всех $t \in (0,T)$, g и ζ_T класса (18), где ζ есть обобщенное решение задачи (в смысле Утверждения 2.4.1)

$$\frac{\partial \zeta}{\partial s} + \mathbf{u} \cdot \nabla \zeta = g, \quad \zeta|_{s=t} = \zeta_T.$$

Это позволяет в Утверждении 2.4.3 показать существование и единственность обобщенного решения (6), (7) в смысле Определения 2.4.2, а также, аналогичным образом, в Определении 2.4.4 и Утверждении 2.4.5 построить единственное обобщенное решение той же задачи класса (14). Наконец, в Определении 2.4.6 и Утверждении 2.4.7 (снова с помощью двойственности, аналогично (19), но в обратную сторону) строится единственное обобщенное решение задачи (8) класса (15). Такой же результат верен во всех промежуточных пространствах между L_{Φ} и L_{1} и между L_{Ψ} и L_{∞} .

В п. 2.5 показана существенность требования $M \in \mathcal{K}$ в результатах пп. 2.2–2.4. А именно, для любых $M \notin \mathcal{K}$ и T>0 строятся контрпримеры:

- а) $\psi \in L_{\infty}(Q_T)$, $f \in L_{\infty}(0,T,L_M(\Omega))$ такие, что $\psi \not\equiv 0$, $f \geqslant 0$, $\psi \geqslant 0$, но (12) выполнено с $\lambda = 0$ Пример 2.5.1.
- b) $\zeta \in L_{\infty}(Q_T)$, $\mathbf{u} \in L_1(0, T, \hat{W}^1 L_M(\Omega))$, $\zeta \not\equiv 0$, но ζ есть решение (8) с g = 0, $\zeta_T = 0$ Пример 2.5.2.
- с) Та же **u**, что и в п. b), $\rho \in L_{\infty}(Q_{T-\varepsilon})$ ($\forall \varepsilon > 0$); $\rho \in L_1(Q_T)$ решение (6) с h = 0 (здесь даже $\rho_0 \in L_{\infty}(\Omega)$), но supp $\rho(t)$ стягивается в точку (т. е. $\rho(t) \to \delta$) при $t \to T$, так что задача (6), (7) не имеет решения даже в классе $L_{\infty}(0, T, L_1(\Omega))$ Пример 2.5.3.

В итоге получена корректность задач (6), (7) и (8) при условиях (11), (16) в классах Орлича, близких к $L_{\infty}(0,T,L_1(\Omega))$ для ρ и к $L_{\infty}(Q_T)$ для ζ , и в самих этих пространствах, причем чем «хуже» M (т. е. чем медленнее она растет) тем уже полоса в шкале отведенная для L_{Φ} и L_{Ψ} . При «переходе функции M через границу класса \mathcal{K} » корректность нарушается, хотя оценки в граничных классах (17), (18) сохраняют силу⁴².

В п. 2.6 изучено соотношение (13), на котором строились результаты пп. 2.3, 2.4 — показано, что оно возможно для N-функций тогда и только тогда, когда $M \in \mathcal{K}$, а Φ обладает свойством $(\xi \Phi'(\xi) - \Phi(\xi))/\Phi(\xi) \to 0$ при $\xi \to \infty$, что и означает упомянутое расположение L_{Φ} между L_1 и всеми $L_{1+\varepsilon}$ (и соответственно L_{Ψ} между L_{∞} и всеми L_p , $p < \infty$).

Оставшиеся пп. 2.7–2.11 Главы 2 посвящены обобщению результатов для уравнения (1) на квазилинейный случай

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) + \omega(\rho) = 0. \tag{20}$$

Точные формулировки результатов о существовании и единственности решения задачи (20), (7) приведены в Теоремах 2.11.3–2.11.5, которые здесь не выписаны, т. к. это требует долгих предварительных построений. Отметим лишь, что по-прежнему существенно используются (16) и аналог (11) $(W_{1+\varepsilon}^1)$ вместо W_1^1 , а от ω требуется лишь:

⁴²Таким образом, хотя очевидными (и налагающими формально минимальные требования на вектор \mathbf{u}) являются оценки решений задач (6), (7) и (8) в L_1 и L_∞ , но классами корректности оказываются пространства Орлича.

- 1. непрерывность и монотонность на всей оси \mathbb{R} ,
- 2. в окрестности $\pm \infty$ рост быстрее линейной функции, и подходящий знак: $\operatorname{sgn} \omega(s) = \operatorname{sgn} s$,
- 3. некоторые ограничения на характер (но не скорость) роста на $\pm \infty$.

Глава 3 играет вспомогательную роль, хотя ее результаты представляют самостоятельный интерес. Основным итогом Главы 3 является

Теорема 3.12.1. Пусть линейный оператор $A \in \mathcal{L}(L_p)$ при $p \in (\alpha, \beta)$, где $1 \leq \alpha < \beta \leq +\infty$, причем $||A||_{\mathcal{L}(L_p)} \leq C\varphi(p)$, где $\varphi \in \Omega_{\sigma}(\beta)$. Пусть $\psi \geqslant 0$ — решение уравнения

$$\mathcal{M}_{\sigma}[\psi] \stackrel{\varphi}{\sim} \varphi,$$
 (21)

т. е. ядро преобразования $\mathbf{F}_{\psi,\sigma}$ с характеристикой φ . Тогда $A \in \mathcal{L}(L_M, L_\Phi)$, где $\Phi \in \mathcal{C}(\beta)$, $\Phi \prec M_*$ произвольна $(M_* -$ пороговая функция преобразования $\mathbf{F}_{\psi,\sigma}$), а $M = \mathbf{F}_{\psi,\sigma}[\Phi]$ (с любым σ). В частности, при $\beta = +\infty$ верно и $A \in \mathcal{L}(L_\infty, L_{M_*})$.

Поясним понятия, участвующие в формулировке Теоремы 3.12.1. Символ $\Omega_{\sigma}(\beta)$ означает множество измеримых на $[\alpha,\beta)$ функций φ , для которых существует решение $\psi \geqslant 0$ уравнения (21); в нем $\mathcal{M}_{\sigma}[\psi](p) = \left(\int\limits_{\sigma}^{+\infty} \psi(s) s^p ds\right)^{1/p}$ — преобразование Меллина с точностью до степени 1/p; а отношение $\omega_1 \stackrel{\varphi}{\sim} \omega_2$ значит $C_1\omega_1(p) \leqslant \omega_2(p) \leqslant C_2\omega_1(p)$ при $p \to \beta$. Далее, $\mathbf{F}_{\psi,\sigma}$ есть интегральное преобразование типа свертки с ядром ψ : $\mathbf{F}_{\psi,\sigma}[\Phi](v) = \int\limits_{\sigma}^{+\infty} \psi(s)\Phi(vs)ds$. Термин «характеристика» пояснен ниже. Символ $\mathcal{C}(\beta)$ означает множество N-функций, эквивалентных 43 аналитическим функциям вида

$$\Phi(s) = \int_{\alpha}^{\beta} \chi(p) s^p dp, \quad \chi \in L_1(\alpha, \beta), \quad \beta \in \text{supp}\chi, \quad \chi \geqslant 0.$$
 (22)

Пороговой для $\mathbf{F}_{\psi,\sigma}$ функцией называется такая M_* , что $\mathbf{F}_{\psi,\sigma}[M_*] \to \infty$ при конечных значениях аргумента⁴⁴.

Теорема 3.12.1 описывает экстраполяцию линейных операторов вправо 45 со шкалы L_p в пространства Орлича. Ее новизна заключается в полном и конструктивном описании свойств операторов во всех промежуточных пространствах, а не только в конце шкалы (L_{∞}) , а также в применяемом методе (интегральные преобразования и представления). Фактически

 $^{^{43}}$ в смысле стандартной эквивалентности \sim N-функций

⁴⁴Такие функции как $\mathbf{F}_{\psi,\sigma}[M_*]$ порождают L_∞ в качестве «своих» пространств Орлича.

⁴⁵Этот результат легко распространяется на нелинейные операторы, а для линейных операторов (с помощью двойственности) переформулируется для экстраполяции влево, но эти обобщения не приводятся в диссертации за ненадобностью для ее основных целей.

в Главах 4–6 используется только случай $\beta = +\infty$, который представлен в Теореме 3.12.1 наиболее полно, как видно далее.

В п. 3.1 дается описание класса $\mathcal{C}(\beta)$, для которого применима Теорема 3.12.1. Введем обозначения:

$$\mathbf{m}_{\Phi}(p) = \min_{u \geqslant 1} \frac{\Phi(u)}{u^p}, \qquad \mathbf{P}_{\beta}[\Phi](u) = \int_{\alpha}^{\beta} \mathbf{m}_{\Phi}(p) u^p dp$$

— эти величины имеют смысл для всех

$$\Phi \in \mathcal{D}(\beta) \equiv \{ \Phi \mid \Phi(s) \gg s^{\gamma}, \, \forall \gamma < \beta; \, \Phi(s) \ll s^{\beta} \}.$$

Легко видеть, что $\mathcal{C}(\beta) \subset \mathcal{D}(\beta)$, и необходимо дать достаточные условия для $\mathcal{C}(\beta)$. Оказывается, что хотя класс функций вида (22) достаточно узок, но эквивалентные им функции (т. е. $\mathcal{C}(\beta)$) образуют богатый подкласс в $\mathcal{D}(\beta)$, поддающийся конструктивному описанию без необходимости восстановления веса χ в разложении (22). Особенно удобен случай $\beta = +\infty$, когда в класс $\mathcal{E} = \{ \Phi \in \mathcal{D}(+\infty) \mid \Phi \sim \mathbf{P}_{\infty}[\Phi] \} \subset \mathcal{C}(+\infty)$ попадают «почти все» $\Phi \in \mathcal{D}(+\infty)$, а именно, достаточно $\Phi(s) \succ \exp(\ln s \cdot \ln \ln s)$ плюс некоторые необременительные ограничения на характер (но не скорость) роста Φ на ∞ .

В п. 3.2 изучаются свойства преобразования $\mathbf{F}_{\psi,\sigma}$. Показано, что оно сохраняет отношения \prec , \prec и \sim и тем самым действует на классах N-функций (т. е. на пространствах Орлича). На степенных функциях $\mathbf{F}_{\psi,\sigma}$ не повышает скорость роста: $\mathbf{F}_{\psi,\sigma}[s^p] = \varphi^p(p)v^p$, где $\varphi = \mathcal{M}_{\sigma}[\psi]$ — так называемая характеристика $\mathbf{F}_{\psi,\sigma}$ (в общем случае скорость роста повышается). Третий (помимо ядра ψ и характеристики φ) способ описания $\mathbf{F}_{\psi,\sigma}$ — это его пороговая функция, она связана с характеристикой формулой $M_*(v) = \int\limits_1^{+\infty} \varphi^{-p}(p)v^p dp$. Оказывается, что при изменении φ с точностью до $\stackrel{\varphi}{\sim}$ образы $\mathbf{F}_{\psi,\sigma}$ от фиксированной функции (или класса) меняются в пределах одного класса эквивалентности, т. е. $\mathbf{F}_{\psi,\sigma}$ как оператор на пространствах Орлича остается тем же — это и позволяет решать уравнение (21) с точностью до $\stackrel{\varphi}{\sim}$.

В п. 3.3 даются описание класса $\Omega_{\sigma}(\beta)$ и алгоритм решения уравнения (21), т. е. восстановления ядра ψ преобразования $\mathbf{F}_{\psi,\sigma}$ по его характеристике φ — это необходимо для применения Теоремы 3.12.1. Хотя образы преобразования Меллина всегда аналитичны, и процедура его обращения требует выхода в комплексную плоскость \mathbb{C} , но нам нужно обращать \mathcal{M}_{σ} с точностью до $\overset{\sim}{\sim}$, что и позволяет рассматривать неаналитические φ и строить ψ без выхода в \mathbb{C} , причем в терминах асимптотики φ в окрестности точки β . Например, в класс $\Omega_{\sigma}(+\infty)$ попадают все функции φ , скорость роста которых достаточно мала⁴⁶, а характер роста достаточно регуляр-

⁴⁶например, заведомо достаточно не быстрее $p^N, N > 0$.

ный⁴⁷; существуют богатые классы и более быстро растущих $\varphi \in \Omega_{\sigma}(+\infty)$, эти классы можно размножать произведениями представителей, что соответствует сверткам ядер. Во всех случаях построен алгоритм асимптотического вычисления ψ через φ из функциональных уравнений. Ответ не зависит от выбора α и σ , так что эти числа можно выбирать для удобства аналитических представлений, если таковые найдутся (например, из таблиц преобразований), так что индекс σ в $\Omega_{\sigma}(\beta)$ не означает зависимости от σ .

В п. 3.4 приведена сводка результатов пп. 3.1–3.3 и даются ответы на некоторые дополнительные вопросы, возникшие в этих пунктах.

Пп. 3.5–3.11 посвящены смежной задаче — описанию пространства $L_{\omega,\beta}(\Omega) = \{ u \in L_p(\Omega) \mid \forall p \in [\alpha,\beta) : \|u\|_{L_p} \leqslant C\omega(p) \}$ с нормой

$$||u||_{L_{\omega,\beta}} = \sup_{p \in [\alpha,\beta)} \frac{||u||_{L_p}}{\omega(p)}.$$
 (23)

Такого рода шкала оценок возникает в связи с теоремами вложения и в прикладных задачах 48 . Описание множеств вида (23) — стандартная задача теории экстраполяции 49 .

В п. 3.5 даны общая постановка проблемы и исторический обзор.

В пп. 3.6–3.11 с помощью техники интегральных представлений, развитой в пп. 3.1–3.4, описывается место пространств $L_{\omega,\beta}$ в шкале симметричных пространств, и прежде всего пространств Орлича. Для этого требуются обозначения⁵⁰

$$\mathbf{In}_{\beta}[\varphi](v) = \int\limits_{\alpha}^{\beta} \frac{v^p dp}{\varphi^p(p)}, \qquad \mathbf{Sc}_{\beta}[\Phi](p) = \frac{1}{\mathbf{m}_{\Phi}^{1/p}(p)} = \max_{u \geqslant 1} \frac{u}{\Phi^{1/p}(u)}.$$

В п. 3.6 изучается поведение операторов \mathbf{In}_{β} , \mathbf{Sc}_{β} и методы их обращения. В п. 3.7 изучаются вложения пространств $L_{\omega,\beta}$ друг в друга в терминах порядков порождающих функций ω .

В п. 3.8 приводятся основные результаты пп. 3.5—3.11 о связи $L_{\omega,\beta}$ с пространствами Лоренца, Марцинкевича и Орлича. Для приложений особенно важен частный случай «близости к L_{∞} », когда оказывается, что (при $\Phi \in \mathcal{E}$ и/или $\omega \in \mathbf{Sc}_{\infty}[\mathcal{E}]$) пространства Орлича L_{Φ} и пространства $L_{\omega,\infty}$ совпадают, если Φ и ω связаны эквивалентными равенствами $\Phi = \mathbf{In}_{\infty}[\omega]$, $\omega = \mathbf{Sc}_{\infty}[\Phi]$.

В п. 3.9 изучается класс $\mathbf{Sc}_{\infty}[\mathcal{E}]$, возникший в п. 3.8.

⁴⁷например, при N=1 это значит гладкость и вогнутость φ .

⁴⁸В.А.Вайгант, А.В.Кажихов, В.В.Шелухин, В.И.Юдович, С.И.Похожаев, И.Б.Симоненко.

 $^{^{49}}$ Более того, именно через это описание, как правило, и решается проблема экстраполяции операторов — см. работы авторов, упомянутых в п. II.4.5; мы же решаем эти две проблемы независимо и другими методами.

 $^{^{50}}$ In $_{\beta}$ определен на $\varphi \geqslant \text{const} > 0$, а \mathbf{Sc}_{β} — на $\mathcal{D}(\beta)$; отметим что $\mathbf{P}_{\beta} = \mathbf{In}_{\beta} \circ \mathbf{Sc}_{\beta}$.

В пп. 3.10, 3.11 изучается вопрос об оптимальности результатов п. 3.8, и в частности показывается, что в случае несовпадения L_{Φ} и $L_{\omega,\infty}$ возникающий «зазор» все же меньше, чем получаемый из общих соображений теории симметричных пространств, основанных на анализе фундаментальных функций.

В п. 3.12 резюмируются результаты всей Главы 3: пп. 3.5–3.11 — в виде сводной диаграммы вложений, а пп. 3.1–3.4 — в виде Теоремы 3.12.1.

Глава 4 открывает блок результатов, непосредственно отвечающих на основной вопрос диссертации о теоремах существования для системы (1)—(3). Главной задачей в этой главе является прозрачная иллюстрация основных идей в простейшей ситуации. А именно, в качестве ОУ (3) взято

$$\mathbb{P} = \lambda(|\mathrm{div}\mathbf{u}|^2)\mathrm{div}\mathbf{u} \cdot \mathbb{I} + 2\mu(|\mathbb{D}|^2)\mathbb{D},\tag{24}$$

что соответствует модели обобщенной ньютоновской жидкости, являющейся естественным обобщением классической модели (4). В связи с отсутствием давления (и плотности вообще) в (24) систему уравнений (1), (2), (24) естественно назвать моделью Бюргерса с нелинейной вязкостью. Для этой системы ставится первая начально-краевая задача в цилиндре $Q_T = \Omega \times (0,T)$:

$$\rho|_{t=0} = \rho_0 \geqslant 0, \qquad \rho \mathbf{u}|_{t=0} = \mathbf{w}, \tag{25}$$

$$\mathbf{u}|_{\partial\Omega\times(0,T)} = 0,\tag{26}$$

где $\Omega \subset \mathbb{R}^n$ — ограниченная область с гладкой границей, число T>0 произвольно. Естественно предположить $\operatorname{mes}(\{\rho_0=0\}\cap \{\mathbf{w}\neq 0\})=0$, тогда величина⁵¹

$$\mathbf{u}_0(\mathbf{x}) = \begin{cases} \mathbf{w}(\mathbf{x})/\rho_0(\mathbf{x}), & \rho_0(\mathbf{x}) > 0, \\ \text{произвольным образом продолжено}, & \rho_0(\mathbf{x}) = 0 \end{cases}$$

вводится корректно в том смысле, что $\mathbf{w} = \rho_0 \mathbf{u}_0$. Коэффициенты вязкости для определенности принимаются в виде

$$\lambda(s) = \exp(\sqrt{s}), \qquad \mu(s) = \exp(s^{\varepsilon_0}),$$
 (27)

где $\varepsilon_0 = \text{const} > 0$.

В п. 4.1 формулируются априорные оценки гладких решений задачи (1), (2), (24)–(26). Для этого используются обозначения 52

$$\Lambda(s) = \int_{0}^{s} \lambda(\xi)d\xi, \quad M(s) = \int_{0}^{s} \mu(\xi)d\xi, \quad \Phi_{\alpha}(u) = u \ln^{\alpha} u, \quad \Psi_{\alpha} = \overline{\Phi}_{\alpha};$$

 $[\]overline{}^{51}$ Предполагая выполненными какие-либо свойства начального поля скоростей \mathbf{u}_0 , мы подразумеваем, что они справедливы хотя бы для одного из его продолжений на множество $\{ \rho_0 = 0 \}$, и именно это продолжение будет браться в качестве начальных данных для скорости.

 $^{^{52} \}Pi$ редставление для Φ_{α} понимается в смысле главной части, т. е. при $u\gg 1.$

$$X = \left\{ \mathbf{v} \in L_{1,\text{loc}}(\Omega) \mid |\text{div}\mathbf{v}|^{2} \in E_{\Lambda}(\Omega), \mid \mathbb{D}(\mathbf{v})|^{2} \in E_{M}(\Omega), \mathbf{v}|_{\partial\Omega} = 0 \right\},$$

$$\overline{X} = \left\{ \mathbf{v} \in L_{1,\text{loc}}(\Omega) \mid |\text{div}\mathbf{v}|^{2} \in L_{\Lambda}(\Omega), \mid \mathbb{D}(\mathbf{v})|^{2} \in L_{M}(\Omega), \mathbf{v}|_{\partial\Omega} = 0 \right\},$$

$$\|\mathbf{v}\|_{X} = \|\mathbf{v}\|_{\overline{X}} = \left(\||\text{div}\mathbf{v}|^{2}\|_{L_{\Lambda}(\Omega)} + \||\mathbb{D}(\mathbf{v})|^{2}\|_{L_{M}(\Omega)} \right)^{1/2}.$$

В Лемме 4.1.2 при условии $\alpha \geqslant 2 + 1/\varepsilon_0$ получены оценки для следующих величин:

- 1. $\int_{\Omega_{-}} \left(\lambda(|\mathrm{div}\mathbf{u}|^2)|\mathrm{div}\mathbf{u}|^2 + 2\mu(|\mathbb{D}|^2)|\mathbb{D}|^2\right) d\mathbf{x} dt$ I энергетическая оценка.
- 2. $\|\rho\|_{L_{\infty}(0,T,L_{\Phi_{\alpha}}(\Omega))}$ из (1) на основе (14), (27) и п. 1. 3. $\|\mathbf{u}\|_{L_{\infty}(0,T,X)} + \int\limits_{Q_T} \rho \left|\mathbf{u}_t\right|^2 d\mathbf{x} dt$ II энергетическая оценка.

Отметим, что ввиду Главы 2 быстрый рост λ в (27) существен для оценки р. При доказательстве априорных оценок существенно используется

Утверждение 4.1.1. Гладкие векторные поля \mathbf{v} в Ω , исчезающие на границе, удовлетворяют при всех $\alpha > 2$ оценке

$$\| |\nabla \otimes \mathbf{v}|^2 \|_{L_{\Psi_{\alpha}}(\Omega)} \leqslant C_2(\Omega) \| |\mathbb{D}(\mathbf{v})|^2 \|_{L_{\Psi_{\alpha-2}}(\Omega)}$$

— это результат применения Теоремы 3.12.1 к оператору $\mathbb{D}(\mathbf{v}) \mapsto \nabla \otimes \mathbf{v},$ который (ввиду неравенства Корна) ограничен во всех L_p (2)с нормой Cp (т. е. $\varphi(p)=p$).

В п. 4.2 строятся приближенные решения ρ_m , \mathbf{u}_m задачи (1), (2), (24)— (26): уравнение (1) решается точно, а (2) — смысле Галеркина—Фаэдо, с регуляризацией конвективных членов.

В п. 4.3 доказываются основные результаты Главы 4. На основании априорных оценок утверждается *-слабая сходимость приближенных решений к некоторым пределам

$$\rho \in L_{\infty}(0, T, L_{\Phi_{\alpha}}(\Omega)), \quad \rho \geqslant 0, \quad \mathbf{u} \quad \mathbf{u} \in L_{\infty}(0, T, \overline{X}),$$
(28)

что после достаточно стандартных рассуждений о предельном переходе в конвективных членах позволяет получить для этих функций уравнение (1) и (вместо (2)) уравнение

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \operatorname{div}(\rho\mathbf{u} \otimes \mathbf{u}) = \operatorname{div}\overline{\mathbb{P}} + \rho\mathbf{f}$$
 (29)

(понимаемые в обобщенном смысле), где

$$\overline{\mathbb{P}} = \operatorname{wk}^* \lim \mathbb{P}(\mathbf{u}_m), \quad \operatorname{div} \overline{\mathbb{P}} \in L_2(0, T, W^{-1} L_{\Phi_{\alpha}}(\Omega)).$$
 (30)

Для предельного перехода в вязких членах, т. е. «снятия черты с Р», ключевую роль играет

Теорема 4.3.5. Всякая тройка функций ρ , \mathbf{u} , $\overline{\mathbb{P}}$ класса (28), (30), удовлетворяющая (1), (29), (25), (26), удовлетворяет также энергетическому равенству (при почти всех $t \in (0,T)$)

$$\frac{1}{2} \int_{\Omega} \rho |\mathbf{u}|^2 \Big|_{s=t} d\mathbf{x} - \frac{1}{2} \int_{\Omega} \rho_0 |\mathbf{u}_0|^2 d\mathbf{x} + \int_{0}^{t} \int_{\Omega} \overline{\mathbb{P}} : \mathbb{D}(\mathbf{u}) d\mathbf{x} ds - \int_{0}^{t} \int_{\Omega} \rho \mathbf{u} \cdot \mathbf{f} d\mathbf{x} ds = 0.$$

В доказательстве этой теоремы центральным моментом является включение $\rho |\nabla \otimes \mathbf{u}| \in L_1(Q_T)$, гарантируемое рассматриваемым классом решений. Отсюда ясно, что, ввиду «плохих» свойств ρ (хуже любого $L_{1+\varepsilon}$ — см. п. 2.6) требуется «почти ограниченность» $\nabla \otimes \mathbf{u}$, что и влечет необходимость быстрого роста (27) коэффициентов вязкости.

Ввиду Теоремы 4.3.5 удается применить стандартные рассуждения метода монотонности и получить окончательный результат:

Теорема 4.3.6. Пусть коэффициенты вязкости в задаче (1), (2), (24)–(26) даются формулами (27), причем $\varepsilon_0 \geqslant 1/2$. Пусть также $\mathbf{f} \in L_{\infty}(Q_T)$, $\rho_0 \in L_{\Phi_{\alpha}}(\Omega)$, $\alpha \geqslant 4$, $\mathbf{u}_0 \in X$, число T > 0 произвольно. Тогда в Q_T существует решение указанной задачи класса (28). При этом уравнения (1), (2) выполнены как равенства в пространстве $L_2(0,T,W^{-1}L_{\Phi_{\alpha}}(\Omega))$, начальные данные (25) принимаются по непрерывности в *-слабой топологии $L_{\Phi_{\alpha}}(\Omega)$, а краевое условие (26) понимается в смысле обращения \mathbf{u} в 0 на $\partial\Omega \times (0,T)$ как непрерывной по $\mathbf{x} \in \overline{\Omega}$ функции при почти всех $t \in (0,T)$.

Теорема 4.3.7. Всякое слабое решение задачи (1), (2), (24)–(26) класса (28) удовлетворяет при почти всех $t \in (0,T)$ энергетическому равенству

$$\frac{1}{2} \int_{\Omega} \rho |\mathbf{u}|^2 \Big|_{s=t} d\mathbf{x} - \frac{1}{2} \int_{\Omega} \rho_0 |\mathbf{u}_0|^2 d\mathbf{x} + \int_{0}^{t} \int_{\Omega} \mathbb{P}(\mathbf{u}) : \mathbb{D}(\mathbf{u}) d\mathbf{x} ds = \int_{0}^{t} \int_{\Omega} \rho \mathbf{u} \cdot \mathbf{f} d\mathbf{x} ds.$$

В п. 4.4 доказано выполнение закона сохранения массы

$$\int_{\Omega} \rho(t, \mathbf{x}) d\mathbf{x} = \int_{\Omega} \rho_0(\mathbf{x}) d\mathbf{x}$$
 (31)

(при почти всех $t \in (0,T)$) для слабых решений рассматриваемого класса⁵³ и сделаны дополнительные замечания об обобщении результатов п. 4.3:

- 1. снятие ограничения $\varepsilon_0 \geqslant 1/2$ в Теореме 4.3.6 или требований на рост λ ;
- 2. обобщение (24) до более общих ОУ (аналогичных Главе 5, но пока без давления).

⁵³Ср. Предложение 5.2.6 ниже.

 Γ лава 5 посвящена обобщению результатов Γ лавы 4 на достаточно общие ОУ стоксовых ⁵⁴ сред. При этом удобно сменить обозначения для тензора напряжений, написав вместо (2) уравнение

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \operatorname{div}(\rho\mathbf{u} \otimes \mathbf{u}) = \operatorname{div}\mathbb{P}' + \rho\mathbf{f}.$$
 (32)

ОУ будем рассматривать вида

$$\mathbb{P}' = -\rho \mathbb{I} + \mathbb{P}(\mathbf{u}),\tag{33}$$

т. е. допускать наличие давления $p = \rho$, а от вязких членов $\mathbb{P}(\mathbf{u})$ требовать выполнения четырех аксиом:

- А1) \mathbb{P} коэрцитивен, т. е. $L(\mathbf{u}) \equiv \int_{\Omega} \mathbb{P}(\mathbf{u}) : \mathbb{D}(\mathbf{u}) d\mathbf{x} \geqslant \int_{\Omega} M(|\mathbb{D}(\mathbf{u})|) d\mathbf{x}$ при всех $\mathbf{u} \in X$;
- A2) \mathbb{P} монотонен, т. е. $\int_{\Omega} (\mathbb{P}(\mathbf{u}) \mathbb{P}(\mathbf{v})) : \mathbb{D}(\mathbf{u} \mathbf{v}) d\mathbf{x} \geqslant 0$ при всех $\mathbf{u}, \mathbf{v} \in X$;
- А3) $\mathbb{P}(\cdot)$ действует, в определенном смысле, ограниченным образом: $\int_{\Omega} \overline{M}(|\mathbb{P}(\mathbf{u})|) d\mathbf{x} \leqslant C_1 + C_2 \int_{\Omega} M(|\mathbb{D}(\mathbf{u})|) d\mathbf{x}$ для всех $\mathbf{u} \in X$;
- A4) а также \mathbb{P} непрерывен в следующем смысле: $\mathbb{P}(\mathbf{u} \varepsilon \mathbf{v}) \to \mathbb{P}(\mathbf{u})$ *-слабо в $L_{\overline{M}}(\Omega)$ при $\varepsilon \to 0$ для всех $\mathbf{u}, \mathbf{v} \in X$.

Здесь обозначено

$$X = \{ \mathbf{u} \in L_{1,\text{loc}}(\Omega) \mid \mathbb{D}(\mathbf{u}) \in L_M(\Omega); \mathbf{u}|_{\partial\Omega} = 0 \}, \quad \|\mathbf{u}\|_X = \|\mathbb{D}(\mathbf{u})\|_{L_M(\Omega)}$$
(34)

с N-функцией M, удовлетворяющей ограничению роста

$$M(s) \geqslant \exp(s), \qquad s \geqslant s_0 = \text{const}$$
 (35)

(аналогично (27)). Требованиям А1–А4 удовлетворяют, например, тензоры

$$\mathbb{P}(\mathbf{u}) = 2\Lambda'((\operatorname{tr}\mathbb{D})^2)(\operatorname{tr}\mathbb{D}) \cdot \mathbb{I} + \sum_{s=1}^{N} 2s\Gamma'_s(|\mathbb{D}^s|^2)\mathbb{D}^{2s-1}$$
 (36)

с произвольным $N \in \mathbb{N}$, если все Γ_s и Λ — неубывающие выпуклые функции класса C^1 , причем $M(\xi) = 2\xi^2\Gamma_1'(\xi^2)$ есть N-функция, удовлетворяющая Δ_3 -условию, и Γ_1 растет существенно быстрее всех прочих коэффициентов. В этом случае (33) имеет вид (5) с

$$V = \Lambda((\operatorname{tr}\mathbb{D})^2) + \sum_{s=1}^{N} \Gamma_s(|\mathbb{D}^s|^2).$$
 (37)

Для системы (1), (32), (33) рассматривается та же задача (25), (26). Несмотря на сходство постановок с Главой 4, в Главе 5 появляются существенные отличия:

 $^{^{-54}}$ т. е. удовлетворяющих постулатам Стокса — в отличие, например, от сред Бингама, рассматриваемых в Главе 6.

- 1. І энергетическая оценка теперь обеспечивает $\rho \in L_{\infty}(0, T, L_{\Phi_1}(\Omega))$. Однако для интегрируемости $\rho | \nabla \otimes \mathbf{u} |$ (необходимой для доказательства энергетического равенства и теоремы существования) этого недостаточно⁵⁵, поэтому оценка ρ из (1) методами Главы 2 по-прежнему необходима, что и влечет требование вида (35).
- 2. Теряет силу II энергетическая оценка, обеспечивавшая в Главе 4 ограниченность $\{(\mathbf{u}_m)_t\}$ (несмотря на невыполнение уравнения (2) приближенными решениями в методе Галеркина—Фаэдо), необходимую для предельного перехода в конвективных членах. В связи с этим в качестве метода построения приближенных решений приходится прибегать к полудискретизации по времени (для удобства с одновременным сглаживанием конвективных членов и параболической регуляризацией):

$$\frac{\rho_k - \rho_{k-1}}{\tau} + \operatorname{div}(\rho_k(\mathbf{u}_k)_h) = \varepsilon \Delta \rho_k, \tag{38}$$

$$\frac{\rho_k \mathbf{u}_k - \rho_{k-1} \mathbf{u}_{k-1}}{\tau} + \operatorname{div}(\rho_k \mathbf{u}_k \otimes (\mathbf{u}_k)_h) = \operatorname{div}\mathbb{P}(\mathbf{u}_k) - \nabla \rho_k + \rho_k \mathbf{f}_k, \quad (39)$$

$$\frac{\partial \rho_k}{\partial \mathbf{n}} \Big|_{\partial \Omega} = 0, \quad \mathbf{u}_k \Big|_{\partial \Omega} = 0$$
 (40)

— здесь
$$k\geqslant 1,\;\mathbf{f}_k(\mathbf{x})=rac{1}{ au}\int\limits_{(k-1) au}^{k au}\mathbf{f}(s,\mathbf{x})ds;\;$$
при $k=0\;$ функции $\mathbf{u}_k,\;\rho_k$

взяты равными соответственно \mathbf{u}_0 и усреднению ρ_{0m} от ρ_0 с радиусом усреднения 1/m.

В п. 5.1 показана разрешимость релаксированной стационарной задачи (38)–(40) для \mathbf{u}_k , ρ_k при $\tau < \tau_0(\varepsilon, h)$.

В п. 5.2, в целом аналогично 56 Главе 4, получен основной результат Главы 5:

Теорема 5.2.5. Пусть заданы $\mathbf{f} \in K_{\Psi_{\beta/2}}(Q_T)$ ($\beta > 7/2$, T > 0 — произвольные); $\rho_0 \in L_{\Phi_{\beta}}(\Omega)$, $\rho_0 \geqslant 0$, и такое \mathbf{w} , что $\mathbf{w}/\rho_0 \in L_{\Psi_{\beta}}(\operatorname{supp}\rho_0)$. Тогда в Q_T существует решение задачи (1), (32), (33), (25), (26) в классе $\rho \in L_{\infty}(0,T,L_{\Phi_{\beta}}(\Omega))$, $\rho \geqslant 0$, $\mathbf{u} \in Y$. При этом уравнение (1) выполнено в пространстве $L_M(0,T,W^{-1}L_{\Phi_{\beta}}(\Omega))$, а (32) — в Y^* ; начальные данные (25) принимаются по непрерывности в пространстве $W^{-1}L_{\Phi_{\beta}}(\Omega) \times X^*$, краевое условие (26) понимается в смысле значений непрерывной по Гельдеру (по \mathbf{x} при всех t) функции. Всякое решение указанного класса удовлетво-

 56 Хотя и в условиях худшей суммируемости ${\bf u}$ по t и новых сложностей с наличием давления.

⁵⁵Нужно тогда $\nabla \otimes \mathbf{u} \in L_{\Psi_1}$, что ввиду Теоремы 3.12.1 приводит к требованию $\mathbb{D} \in L_{\infty}$. Если же ρ обладает лучшими свойствами благодаря методам Главы 2, то от \mathbb{D} достаточно суммируемости в экспоненциальных пространствах Орлича, и Утверждение 4.1.1 обеспечивает суммируемость $\rho | \nabla \otimes \mathbf{u} |$.

ряет энергетическому равенству (для почти всех $t \in (0,T)$)

$$\int_{\Omega} \left(\frac{\rho |\mathbf{u}|^2}{2} + \rho \ln \rho \right) d\mathbf{x} \Big|_{0}^{t} + \int_{0}^{t} \int_{\Omega} (\mathbb{P}(\mathbf{u}) : \mathbb{D}(\mathbf{u}) - \rho \mathbf{u} \cdot \mathbf{f}) d\mathbf{x} ds = 0.$$

Решение есть предел приближений Роте, сходящихся к (ρ, \mathbf{u}) *-слабо в $L_{\infty}(0, T, L_{\Phi_{\beta}}(\Omega)) \times Y$, причем плотность сходится почти всюду и сильно в $L_p(0, T, L_{\Phi_{\gamma}}(\Omega))$ при всех $p < \infty, \gamma < \beta$.

В Теореме 5.2.5 обозначено

$$Y = \{ \mathbf{v} \in L_{1,\text{loc}}(Q_T) \mid \mathbb{D}(\mathbf{v}) \in L_M(Q_T), \ \mathbf{v}|_{\partial\Omega \times (0,T)} = 0 \},$$

$$\|\mathbf{v}\|_Y = \|\mathbb{D}(\mathbf{v})\|_{L_M(Q_T)}.$$

$$(41)$$

Также доказано выполнение закона сохранения массы для слабых решений рассматриваемого класса:

Предложение 5.2.6. Для всякой пары функций $\mathbf{u} \in L_1(0,T,X)$, $\rho \in L_{\infty}(0,T,L_{\Phi_{\beta}}(\Omega)), \ \beta > 2$, удовлетворяющей (1), $(25)_1$, имеет место соотношение (31) (для почти всех $t \in (0,T)$).

Глава 6 посвящена глобальной разрешимости для модели сжимаемой неньютоновской жидкости Шведова—Бингама. Рассматривается та же система (1), (2), в которой тензор напряжений \mathbb{P} переобозначен через \mathbb{P}_r :

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \operatorname{div}(\rho\mathbf{u} \otimes \mathbf{u}) = \operatorname{div}\mathbb{P}_r + \rho\mathbf{f}.$$
 (42)

Аналогично несжимаемому случаю, ОУ сред Бингама записывается в виде

$$\mathbb{P}_r = \mathbb{P}_f + \mathbb{P}_b,\tag{43}$$

где \mathbb{P}_f — тензор напряжений стоксовой жидкости (уточнен далее), а \mathbb{P}_b есть многозначная функция от \mathbb{D} , задаваемая формулой

$$\mathbb{P}_b = p_* \left\{ \mathbb{T} \left(\frac{\mathbb{D}}{|\mathbb{D}|} \right), \quad \mathbb{D} \neq 0, \right.$$
любой из $\overline{\mathcal{P}}, \quad \mathbb{D} = 0,$
(44)

т. е. в тех точках, где $\mathbb{D} = 0$, тензор \mathbb{P}_b принимает вполне определенные значения, но априори неизвестные (не выражающиеся через ρ и \mathbf{u}), и потому решение системы (1), (42)–(44) есть уже не пара (ρ, \mathbf{u}) , как в стоксовом случае, а тройка $(\rho, \mathbf{u}, \mathbb{P})$. Здесь \mathcal{P} — некоторая ограниченная выпуклая область в пространстве \mathbb{S}_n симметричных тензоров ранга 2, действующих в \mathbb{R}^n , причем $0 \in \mathcal{P}$, $\rho(0,\partial\mathcal{P}) = 1$, т. е. \mathcal{P} вписана в единичный шар пространства \mathbb{S}_n ; $p_* \geqslant 0$ — заданное (постоянное) пороговое напряжение, а \mathbb{T} — тензорное поле, действующее из единичной сферы $S_1 \subset \mathbb{S}_n$ в $\partial\mathcal{P}$.

Другими словами, $p_*\mathcal{P}$ есть область напряжений, соответствующих твердотельному движению⁵⁷, а \mathbb{T} определяет связь напряжений и скоростей деформаций при выходе напряжений в критическую зону $p_*\partial\mathcal{P}$.

В Главе 6 общий «несферический» случай (44) рассмотрен в связи с тем, что это не требует серьезных дополнительных усилий по сравнению со сферическим случаем (когда \mathcal{P} есть единичный шар в \mathbb{S}_n , а \mathbb{T} — тождественное отображение), обычно рассматриваемым в литературе.

Для системы (1), (42)–(44) ставится та же задача (25), (26), что и для стоксовых ОУ (т. е. при $p_*=0$), рассмотренных в Главе 5. Таким образом, естественно решать задачу (1), (42)–(44), (25), (26) с помощью регуляризации тензора \mathbb{P}_b , т. е. аппроксимации⁵⁸ его стоксовыми тензорами $\mathbb{P}_{b\varepsilon}$.

В п. 6.1 приводится точная формулировка модели. Так, формулируется класс рассматриваемых стоксовых тензоров — он аналогичен Главе 5:

$$\mathbb{P}_f = -\rho \mathbb{I} + \mathbb{P}(\mathbf{u}),\tag{45}$$

где \mathbb{P} удовлетворяет аксиомам A1–A4 (см. изложение Главы 5) и нескольким дополнительным, а именно, уточненной непрерывности:

А5) Если $\mathbb{D}(\mathbf{u}_{\varepsilon}) \to \mathbb{D}(\mathbf{u})$ почти всюду в Q_T , и $\mathbb{D}(\mathbf{u}_{\varepsilon})$ ограничены в $K_M(Q_T)$, то $\mathbb{P}(\mathbf{u}_{\varepsilon}) \to \mathbb{P}(\mathbf{u})$ в $\mathcal{D}'(Q_T)$;

и требованиям типа выпуклости:

Аб) Интеграл $\int_0^t L(\mathbf{u})ds$ задает функционал от \mathbf{u} , *-слабо полунепрерывный снизу, т. е. если $\mathbb{D}(\mathbf{u}_\varepsilon) \to \mathbb{D}(\mathbf{u})$ *-слабо в $L_M(Q_t)$, то $\int_0^t L(\mathbf{u})ds \leqslant \liminf \int_0^t L(\mathbf{u}_\varepsilon)ds$;

А7) Если $\mathbb{D}(\mathbf{u}_{\varepsilon}) \to \mathbb{D}(\mathbf{u})$ *-слабо в $L_M(Q_t)$, и $\int_0^t L(\mathbf{u}) ds \geqslant \limsup \int_0^t L(\mathbf{u}_{\varepsilon}) ds$, то для некоторой последовательности $\mathbb{D}(\mathbf{u}_{\varepsilon_k}) \to \mathbb{D}(\mathbf{u})$ почти всюду в Q_t . Здесь смысл обозначений M и L прежний (см. A1, (34) и (35)). В качестве примера тензоров \mathbb{P} , удовлетворяющих аксиомам A1–A7, можно указать класс (36) с теми же ограничениями на Λ и Γ_s , которые были оговорены после аксиом A1–A4, плюс (для выполнения A5–A7) Λ , $\Gamma_s \in C^3$ и строгая выпуклость функций $\Lambda'(\xi^2)\xi^2$ и $\Gamma'_s(\xi^2)\xi^2$.

От бингамовской составляющей, т. е. от поля \mathbb{T} в представлении (44), требуется выполнение следующих аксиом:

⁵⁷Таким образом, твердотельные зоны (ядра) предполагаются несжимаемыми, что является естественным приближением реальной ситуации: в этих зонах напряжения малы, и в них сжимаемостью можно пренебречь. В жидких зонах напряжения могут быть велики, и учет сжимаемости естествен.

⁵⁸Точная формулировка того, в каком смысле эта аппроксимация имеет место, здесь не приводится за недостатком места. Отметим лишь, что в сферическом случае вполне подходит аппроксимация Иосиды, а в несферическом случае она не вполне удобна с позиций физического смысла.

- В1) \mathbb{T} непрерывное отображение;
- В2) $\mu(\mathbb{B}) \equiv \mathbb{T}(\mathbb{B}) : \mathbb{B} > 0$ при всех $\mathbb{B} \in S_1$;
- В3) $\mathbb{T}(\mathbb{B}_2): \mathbb{B}_1 \leqslant \mathbb{T}(\mathbb{B}_1): \mathbb{B}_1 = \mu(\mathbb{B}_1)$ при всех $\mathbb{B}_1, \mathbb{B}_2 \in S_1$.

Тривиальный пример описанного класса тензоров \mathbb{P}_b дается вышеупомянутым сферическим случаем, когда $\mu \equiv 1$.

В п. 6.2 приводятся нетривиальные классы пар $(\mathcal{P}, \mathbb{T})$ (т. е. «несферических» \mathbb{P}_b), удовлетворяющих аксиомам В1–В3, а также обосновывается построение аппроксимирующих тензоров $\mathbb{P}_{b\varepsilon}$.

В п. 6.3 получен основной результат Главы 6. Прежде чем его формулировать, дадим определения:

Определение 6.1.3. Задачей A называется задача (1), (42)–(45), (25), (26), в которой тензор $\mathbb P$ обладает свойствами A1–A7 c ограничением (35), а поле $\mathbb T$ — свойствами B1–B3.

Определение 6.3.1. Задачей A_{ε} называется задача (1), (42), (45), (25), (26), замыкаемая соотношением $\mathbb{P}_r = \mathbb{P}_f + \mathbb{P}_{b\varepsilon}$.

Разрешимость задачи A_{ε} следует из Теоремы 5.2.5.

Теорема 6.3.2. Пусть заданы: тензорная функция $\mathbb{P}(\cdot)$ со свойствами A1–A7 при ограничении 59 (35), поле \mathbb{T} со свойствами 60 B1–B3, число T>0 и входные данные того же класса, что и в Теореме 5.2.5. Тогда:

1. Задача A имеет в Q_T решение класса $\rho \in L_{\infty}(0,T,L_{\Phi_{\beta}}(\Omega)), \ \rho \geqslant 0,$ $\mathbf{u} \in Y$ (см. (41)), удовлетворяющее энергетическому равенству

$$\int_{\Omega} \left(\frac{\rho |\mathbf{u}|^2}{2} + \rho \ln \rho \right) d\mathbf{x} \Big|_{0}^{t} + \int_{0}^{t} \int_{\Omega} \left[(\mathbb{P}(\mathbf{u}) + \mathbb{P}_b(\mathbf{u})) : \mathbb{D}(\mathbf{u}) - \rho \mathbf{u} \cdot \mathbf{f} \right] d\mathbf{x} ds = 0.$$

- 2. Уравнение (42) (замыкаемое соотношениями (43)–(45)) удовлетворяется этим решением в том смысле, что $\mathbb{P}_b(\mathbf{u}) = p_* \mathbb{T}\left(\frac{\mathbb{D}}{|\mathbb{D}|}\right)$ при $\mathbb{D} \neq 0$, а на множестве $\{\mathbb{D} = 0\}$ величина $\mathbb{P}_b(\mathbf{u})$ есть вполне определенный тензор $\overline{\mathbb{P}}_b$ со значениями из множества $p_*\overline{\mathcal{P}}$.
- 3. Решение (ρ, \mathbf{u}) есть предел решений $(\rho_{\varepsilon_k}, \mathbf{u}_{\varepsilon_k})$ некоторой последовательности задач A_{ε_k} , сходящихся к нему в смысле

$$(\rho_{\varepsilon}, \mathbf{u}_{\varepsilon}, \mathbb{P}(\mathbf{u}_{\varepsilon}), \mathbb{P}_{b\varepsilon}(\mathbf{u}_{\varepsilon})) \to (\rho, \mathbf{u}, \mathbb{P}(\mathbf{u}), \mathbb{P}_b(\mathbf{u}))$$

*-слабо в
$$L_{\infty}(0,T,L_{\Phi_{\beta}}(\Omega)) \times Y \times L_{\overline{M}}(Q_T) \times L_{\infty}(Q_T),$$

причем $(\rho_{\varepsilon_k}, \mathbb{D}(\mathbf{u}_{\varepsilon_k})) \to (\rho, \mathbb{D}(\mathbf{u}))$ сильно в $L_p(0, T, L_{\Phi_*}(\Omega)) \times L_p(Q_T)$ с любыми $p < +\infty$, $\Phi_* \prec\!\!\prec \Phi_\beta$, и почти всюду в Q_T .

4. Уравнение (1) выполнено для рассматриваемого решения в пространстве $L_M(0,T,W^{-1}L_{\Phi_\beta}(\Omega))$, а (42) — в Y^* , начальные данные (25) принимаются по непрерывности в пространстве $W^{-1}L_{\Phi_\beta}(\Omega) \times X^*$, а краевое

⁵⁹например, в виде (36) с вышеописанными ограничениями на коэффициенты.

⁶⁰например, в стандартном сферическом виде с тождественным полем Т.

условие (26) понимается в смысле значений непрерывной по Гельдеру (по \mathbf{x} при всех t) функции.

Глава 7 посвящена проблеме построения «продвинутой» 61 системы априорных оценок решений уравнений (1), (2) для неньютоновских ОУ. Новизна предлагаемых методов состоит в одновременном учете сжимаемости, многомерности и неньютоновского характера ОУ. В связи с поставленной целью удобно записать (1), (2) в виде

$$\frac{d\rho}{dt} + \rho \operatorname{div} \mathbf{u} = 0, \tag{46}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{w} + \mathbf{f},\tag{47}$$

$$\operatorname{div}\mathbb{P} = \rho \mathbf{w},\tag{48}$$

где ${\bf w}$ — вспомогательный вектор, рассматриваемый как новая неизвестная функция, а

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \tag{49}$$

— оператор материальной производной.

В п. 7.1 предлагается система энергетических тождеств для системы (46)–(49), замыкаемой ОУ вида (обобщение (5) на сжимаемый случай)

$$\mathbb{P} = -p(\rho)\mathbb{I} + \frac{\partial V(\mathbb{D})}{\partial \mathbb{D}}.$$
 (50)

Эти тождества выводятся из системы (46)–(49), рассматриваемой как уравнения для величин (ρ , \mathbf{u}), и из подходящим образом (а именно, так, чтобы не возникали новые производные от плотности) построенных ее дифференциальных продолжений, рассматриваемых как уравнения для величин (ρ , V), (ρ , \mathbf{w}), (ρ , ∇ \otimes \mathbf{w}) и т. д. При этом основные операции (в том числе построение дифференциальных продолжений) производятся над уравнением импульса (47), а уравнение неразрывности (46) и вспомогательное уравнение (48) играют роль своеобразных связей, позволяющих исключать возникающие производные от ρ . Чтобы из этих тождеств получить оценки, необходимо изучить свойства регулярности решений квазилинейной эллиптической системы

$$\operatorname{div} \frac{\partial V(\mathbb{D}(\mathbf{u}))}{\partial \mathbb{D}} = \mathbf{F}.$$
 (51)

В п. 7.2 получены энергетические тождества для (51), и в модельном случае периодических краевых условий 62 для потенциалов вида (37) вы-

 $^{^{61}}$ т. е. такой, которая могла бы обеспечить глобальное существование более регулярных решений, чем слабые.

⁶²Впрочем, другие краевые условия также возможны.

ведена ключевая II энергетическая оценка

$$\int_{\Omega} \Psi(\mathbb{D}) d\mathbf{x} \leqslant C \|\mathbf{F}\|_{L_2(\Omega)}^2, \tag{52}$$

где

$$\Psi(\mathbb{D}) = 2\Lambda'((\operatorname{tr}\mathbb{D})^2)|\nabla \operatorname{tr}\mathbb{D}|^2 + |\nabla \varkappa((\operatorname{tr}\mathbb{D})^2)|^2 + \sum_{s=1}^N \left[2s(2s-1)\Gamma_s'(|\mathbb{D}^s|^2) \sum_{k=1}^n \left| \mathbb{D}^{s-1} \frac{\partial \mathbb{D}}{\partial x_k} \right|^2 + |\nabla \nu_s(|\mathbb{D}^s|^2)|^2 \right],$$

$$\varkappa(\xi) = \int_0^{\xi} \sqrt{\Lambda''(\eta)} d\eta + 1, \qquad \nu_s(\xi) = \int_0^{\xi} \sqrt{\Gamma_s''(\eta)} d\eta + 1.$$

В п. 7.3 на модельном примере (модель Бюргерса, т. е. p=0 в (50); краевые условия периодичности по ${\bf x}$ и начальные данные (25)) показано, как энергетические тождества для (46)–(50) и оценка (52) позволяют продвинуться дальше по сравнению с I, II энергетическими оценками Главы 4, а именно, получить ключевую III энергетическую оценку

$$\|\mathbf{w}\|_{L_{\infty}(0,T,L_{2}(\Omega))} + \|\mathbb{D}(\mathbf{w})\|_{L_{2}(Q_{T})} \le C.$$
 (53)

В п. 7.4 на основе (53) получены дальнейшие оценки для величин $\|\rho\|_{L_{\infty}(0,T,W_2^1(\Omega))}, \|\rho_t\|_{L_{\infty}(0,T,L_2(\Omega))}, \|\nabla\otimes\mathbf{u}_t\|_{L_2(Q_T)}, \|\mathrm{div}\mathbb{P}\|_{L_2(0,T,W_r^1(\Omega))}$ и $\|\mathbb{P}\|_{L_{\infty}(0,T,W_s^1(\Omega))}$ с некоторыми r и s; обсуждаются дальнейшие перспективы и препятствия в тесно связанных проблемах оценок для (51) и (46)–(50), и проблема единственности.

Приложение А содержит результат, не входящий в число первостепенных в диссертации; он приводится как интересная, по мнению автора, иллюстрация того, как экстраполяционные методы, разработанные в Главе 3, могут работать в других областях, помимо уравнений (1), (2). А именно, рассмотрена классическая проблема глобального существования и единственности решений для уравнений Эйлера

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla p = \mathbf{f}; \quad \operatorname{div} \mathbf{v} = 0$$
 (54)

на примере задачи в ограниченной области $\Omega \subset \mathbb{R}^n$ с гладкой границей:

$$\mathbf{v}|_{t=0} = \mathbf{v}_0; \qquad \mathbf{v} \cdot \mathbf{n}|_{\partial\Omega \times (0,T)} = 0.$$
 (55)

Центральным результатом Приложения A является доказанная в п. А.3 **Теорема А.11.** *Решение задачи (54), (55) в классе*

$$\operatorname{rot} \mathbf{v} \in L_{\infty}(0, T, L_{M}(\Omega)), \quad M \in \mathcal{K}_{1} = \left\{ M \mid \int_{-\infty}^{+\infty} \frac{\ln \ln M(s)}{s^{2}} ds = +\infty \right\}$$
 (56)

существует (при n=2) и единственно (при любых n), где давление p определяется с точностью до аддитивной функции от времени.

Существование решения задачи (54), (55) в этом классе (при n=2) показано в п. А.2 аналогично работам В.И.Юдовича (1963, 1995), а при доказательстве единственности центральной идеей является использование Теоремы 3.12.1 с $A: \text{rot } \mathbf{v} \mapsto \mathbb{D}(\mathbf{v}), \, \varphi(p) = p, \, \beta = +\infty$ — оказывается (п. А.1), что тогда при $M \in \mathcal{K}_1$ в Теореме 3.12.1 в точности получится $\Phi \in \mathcal{K}$, что позволяет применить Утверждение 2.2.2 с $f = |\mathbb{D}(\mathbf{v})|$.

При этом, как показано в п. А.4 (Утверждение А.17) на основе результатов п. 3.8, условие (56) эквивалентно найденным В.И.Юдовичем $(1995)^{63}$, однако это выясняется лишь апостериори, а формулировка (56) намного проще.

Заключение содержит краткое резюме основных результатов, полученных в диссертации, и перечень некоторых нерешенных проблем.

Приложение В содержит список некоторых употребляемых в диссертации обозначений и терминов, собранный воедино для удобства читателя.

IV. Публикации автора по теме диссертации

Основные результаты диссертации опубликованы в следующих работах:

IV.1. Публикации в журналах из списка ВАК

- 1. *Мамонтов А.Е.* Существование глобальных решений многомерных уравнений Бюргерса сжимаемой вязкой жидкости. ДАН, 1998, Т. 361, N 2. C. 161–163.
- 2. *Кажихов А.В., Мамонтов А.Е.* Об одном классе выпуклых функций и точных классах корректности задачи Коши для уравнения переноса в пространствах Орлича. Сиб. мат. журн., 1998, Т. 39, N 4. C. 831–850.
- 3. *Мамонтов А.Е.* Существование глобальных решений многомерных уравнений Бюргерса сжимаемой вязкой жидкости. Мат. Сб., 1999, Т. 190, N 8. C. 61–80.
- 4. $\it Mамонтов A.E.$ О глобальной разрешимости многомерных уравнений Навье—Стокса сжимаемой нелинейно вязкой жидкости. І. Сиб. мат. журнал, Т. 40, 1999, N 2. C. 408–420.
- 5. *Мамонтов А.Е.* О глобальной разрешимости многомерных уравнений Навье—Стокса сжимаемой нелинейно вязкой жидкости. II. Сиб. мат. журнал, Т. 40, 1999, N 3. C. 635–649.
- 6. *Мамонтов А.Е.* Оценки глобальной регулярности для многомерных уравнений сжимаемой неньютоновской жидкости. Мат. Заметки, 2000. Т. 68. вып. 3. С. 360–376.
- 7. *Королев О.И.*, *Мамонтов А.Е.* О классах корректности задачи Коши для слабонелинейного уравнения переноса. Вестник НГУ, серия «математика, механика, информатика», 2003, Т. III, вып. 2. С. 46–61.

 $^{^{63}{}m B}$ наших обозначениях они формулируются в терминах пространств $L_{\omega,\infty}$.

- 8. *Мамонтов А.Е.* Интегральные представления и преобразования N-функций. І. Сиб. мат. журнал, Т. 47, 2006, N 1. C. 123–145.
- 9. *Мамонтов А.Е.* Интегральные представления и преобразования N-функций. II. Сиб. мат. журнал, Т. 47, 2006, N 4. C. 811–830.
- 10. *Мамонтов А.Е.* Шкалы пространств L_p и их связь с пространствами Орлича. Вестник НГУ, серия «математика, механика, информатика», 2006, Т. VI, вып. 2. С. 33–56.
- 11. *Мамонтов А.Е.* Существование глобальных решений многомерных уравнений сжимаемой жидкости Бингама. Мат. заметки, 2007, Т. 82, вып. 4. С. 560-577.
- 12. *Мамонтов А.Е.*, *Уваровская М.И.* Нестационарные течения идеальной несжимаемой жидкости: условия существования и единственности решений. Прикл. мех. техн. физ., 2008, Т. 49, N 4(290). С. 130–145.

IV.2. Прочие публикации

- 13. Kazhikhov A. V., Mamontov A. E. Transport Equations and Orlicz spaces, in the book: "Hyperbolic Problems: Theory, Numerics, Applications. Seventh International Conference in Zürich, February 1998. V. II" (International Series of Numerical Mathematics, Vol. 130), 1999, Birkhäuser, Basel—Boston—Berlin. P. 535–544. Editors: Michael Fey and Rolf Jeltsch.
- 14. *Mamontov A.E.* Global Regularity Estimates for Multidimensional Equations of Compressible Non-Newtonian Fluids. Annali dell'Università di Ferrara (Nuova Serie), Sezione VII, Scienze Matematiche, Vol. XLVI, 2000, P. 139–160.
- 15. Mamontov A.E. Extrapolation from L_p into Orlicz spaces via integral transforms of Young functions. J. of Anal. and Appl., 2006, V. 4, N 2, P. 77–118.
- 16. *Мамонтов А.Е.* Глобальная разрешимость многомерных уравнений сжимаемой неньютоновской жидкости, транспортное уравнение и пространства Орлича. Труды С.-Петерб. мат. об-ва, 2008, Т. 14. С. 145–181.

Подписано в печать 23.06.2008 Формат бумаги $60 \times 84 \ 1/16$ Тираж 100 экз.

Заказ № 238 Объем 2 п.л. Бесплатно

Ротапринт Института гидродинамики им. М.А.Лаврентьева СО РАН 630090, Новосибирск, пр. акад. Лаврентьева, 15.